首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
【目的】分离获得β-葡萄糖苷酶高产菌株,确定该菌分类地位,并对其所产β-葡萄糖苷酶的酶学性质进行初步研究。【方法】采用七叶灵显色法从土壤样品中筛选β-葡萄糖苷酶产生菌,再用对硝基苯基-β-D-吡喃葡萄糖苷(PNPG)显色法进行复筛;通过形态特征、生理生化特征及16S rDNA序列相似性分析等方法确定其分类学地位;利用超滤、疏水层析、阴离子层析、分子筛层析法对β-葡萄糖苷酶进行分离纯化;以PNPG为底物,测定β-葡萄糖苷酶的最适反应pH及最适反应温度,通过双倒数作图法确定β-葡萄糖苷酶催化不同底物水解的米氏常数Km值。【结果】从土壤样品中筛选得到一株β-葡萄糖苷酶高产菌株ZF-6C,初步鉴定为Bacillus korlensis;芽胞杆菌ZF-6C所产β-葡萄糖苷酶的分子量约为90 kD,最适反应pH和温度分别为7.0和40°C,该酶具有水解β(1,4)糖苷键的活性,最适底物为邻硝基苯-β-D-吡喃葡萄糖苷,Km值为0.73 mmol/L。金属离子Ca2+、Pb2+增强酶活,而Cu2+、Fe2+抑制酶活。【结论】首次报道从Bacillus korlensis中分离得到β-葡萄糖苷酶,Bacillus korlensis ZF-6C所产β-葡萄糖苷酶在分子量、最适反应条件及底物特异性等方面均不同于已知酶,可能为一结构新颖且催化效率较高的β-葡萄糖苷酶。  相似文献   

2.
以美国内华达州大盆地温泉采集样品为材料,富集获得纤维素及半纤维素高效稳定降解厌氧菌群SVY42,以巨菌草、甘蔗渣、废菇筒、羧甲基纤维素钠、滤纸、木聚糖为碳源,分析菌群SVY42产内切葡聚糖酶(CMC酶)、β-葡萄糖苷酶和木聚糖酶的情况。在此基础上,以木聚糖为底物筛选高产木聚糖酶的菌株。菌群SVY42在以巨菌草作为碳源时的β-葡萄糖苷酶活最高为0.23 U/mL,以木聚糖作为碳源时CMC酶活和木聚糖酶活均为最高,分别为0.31 U/mL和0.35 U/mL。从菌群SVY42中筛选得到1株高产木聚糖酶厌氧菌株SVY42-1,该菌在最适温度41℃和pH 8.0条件下,其木聚糖酶活力为0.26 U/mL,对其进行16S rDNA序列系统进化分析,SVY42-1与已知菌株的最高同源性仅为93.81%,初步鉴定属于新属。  相似文献   

3.
研究了黑曲霉制备β-葡萄糖苷酶液态发酵过程中添加麸皮和纤维二糖的补料工艺.补料量及补料次数影响着β-葡萄糖苷酶的分泌.经过四次补加1%菌麸皮干粉,发酵液中β-葡萄糖苷酶活力由未补料的1.72 U/mL增加到5.07 U/mL,提高了近3倍.而且,添加麸皮浸提液能达到同样效果.采用分批补料工艺产酶时,初始浓度为3%的麸皮用量比较适宜,其蛋白含量和β-葡萄糖苷酶的活力均为最高,分别达到0.69nag,/mL和7.00 U/mL.在补料总量和补料次数相同的情况下,以递减方式补料效果最好,产酶达7.34 U/mL.补加纤维二糖对β-葡萄糖苷酶的分泌具有一定的诱导作用,在接种培养48h时补加0.2%纤维二糖比较适宜.研究表明,分批补料发酵有利于黑曲霉分泌β-葡萄糖苷酶,是一种很好的提高酶产量的方法.  相似文献   

4.
以黑曲霉TJ02为出发菌,对其孢子进行硫酸二乙酯化学诱变,筛选得到遗传稳定的β-葡萄糖苷酶高产菌株DES-7。诱变株DES-7产酶能力可达28 IU/mL以上,较出发菌株提高30%。同时,对该菌株的发酵培养基进行优化,以玉米芯为碳源,酵母粉和硫酸铵为氮源,其产酶能力达到39 IU/mL,较优化前提高了39.3%。此外,对该菌株的β-葡萄糖苷酶的最适温度和pH以及温度稳定性和pH稳定性进行了测定。  相似文献   

5.
利用啤酒糟为培养基对黑曲霉固态发酵产β-葡萄糖苷酶的工艺条件进行了优化和动力学研究。单因素试验表明,最适产酶温度、料液比和接种量分别为30℃、1∶5(啤酒糟∶水,g∶mL)和10%(mL/g);利用L9(34)正交试验优化反应条件,结果表明,在25℃,初始料水比为1:5,接种量10%的条件下,培养4d,β-葡萄糖苷酶的酶活可达10.85U/g。动力学研究表明,β-葡萄糖苷酶在96h进入产酶的高峰期,120h达到酶活最大值。  相似文献   

6.
从土壤中筛选出一株高产α-葡萄糖苷酶的细菌HB-09-5,对其粗酶液进行研究发现,最适反应pH为6.0,最适反应温度为50℃,pH在4.0-7.0,温度在55℃以下保持酶活力相对稳定。通过对产酶条件进行优化,单因素试验表明,最佳碳源为可溶性淀粉,最佳氮源为牛肉膏,Mg2+和Ca2+对产酶有促进作用。优化发酵条件后,菌株HB-09-5产酶水平可达到20.95U/mL,比出发菌酶活提高了2.3倍。  相似文献   

7.
以一株由青藏高原牦牛粪中分离出的链霉菌为出发菌株,对其培养特性、产酶条件和酶学性质进行初步研究.通过重离子诱变,筛选出遗传稳定的高产菌株.结果表明,该菌以玉米芯和麸皮(1∶1)为碳源能高效地诱导木聚糖酶的胞外分泌,其最适培养基和培养条件氮源为酵母膏、初始pH7、培养温度为25℃,在此条件下,第4天酶活力达到峰值3480.25 U/mL.说明该酶能够利用农业废弃物高效生产木聚糖酶.该菌株所产木聚糖酶的最适反应温度为15℃、pH4,属低温酸性木聚糖酶.经重离子诱变后,筛选出一株高产菌株SZ10-7,其酶活力可达5 338.42 U/mL.  相似文献   

8.
木霉GXC产β-葡聚糖酶条件和酶学性质   总被引:7,自引:0,他引:7  
研究了木霉GXC产β-葡聚糖酶的条件.结果表明,最适产酶碳源为麸皮,氮源为硫酸铵;产酶的最适条件为初始pH为4.0~5.0,30℃培养44h.粗酶液经硫酸铵沉淀、Sephadex G-25、Sephadex G-100和DEAE-Sehadex A-50柱层析得到纯β-葡聚糖酶,SDS-PAGE凝胶电泳显示一条带,测得分子量为35kD.该酶最适反应pH5.0,最适反应温度为60℃,在40℃以下、pH4.0~5.0酶活力相对稳定.5.0mmol/L以下的Ca2+、Zn2+和Fe2+,以及10.0mmol/L以下的Co2+对酶活力有激活作用;而Cu2+和Fe3+具有抑制作用.  相似文献   

9.
黑曲霉β-葡萄糖苷酶的酶学特性研究   总被引:1,自引:0,他引:1  
研究黑曲霉β-葡萄糖苷酶的酶学特性,采用酶学研究方法,通过硫酸铵沉淀、Sephadex G-25脱盐和Sephadex G-100纯化了β-葡萄糖苷酶,并进行了黑曲霉β-葡萄糖苷酶的最适反应温度、最适pH、热稳定性、pH稳定性及米氏常数等特性研究,采用SDS-PAGE凝胶电泳测定了分子量。研究表明,β-葡萄糖苷酶的最适反应温度为70℃、最适反应pH为4.5;在40、50和60℃下较稳定,80℃以上稳定性差;β-葡萄糖苷酶在pH为3、7、8、9的缓冲液中的稳定性很差,在pH为4、5、6的缓冲液中稳定性较好,其中在pH为5时,稳定性最好;酶的Km=41.67 mmol/L,Vmax=23.81 U/L;其分子量为65.2 ku。β-葡萄糖苷酶在饲料工业具有良好的应用前景。  相似文献   

10.
响应面法优化黑曲霉HDF05产β-葡萄糖苷酶过程参数   总被引:4,自引:1,他引:3  
为获得黑曲霉Aspergillus niger HDF05菌株较高的β-葡萄糖苷酶酶活,对其发酵条件进行了优化。采用Plackett-Burman实验设计考察关键发酵操作参数对产酶的影响。继而采用最陡爬坡路径逼近最大响应区域,并结合中心组合实验和响应面对4个显著性因素进行分析。Plackett-Burman实验结果表明,发酵温度、装液量、麦麸和 (NH4)2SO4浓度对β-葡萄糖苷酶合成影响显著。通过响应面分析得到一元二阶方程,对方程求解得到优化的发酵过程参数:发酵温度为28 ℃,装液量为71.4 mL/250 mL,麸皮浓度为36 g/L,(NH4)2SO4浓度为5.5 g/L。采用该优化的过程参数,菌株的最大产β-葡萄糖苷酶活力可达60.06 U/mL,较优化前提高了23.9%。将黑曲霉HDF05产生的β-葡萄糖苷酶用于酸解玉米芯纤维残渣的酶解实验中,可明显降低纤维二糖的积累,48 h内可使玉米芯纤维素残渣酶解得率达到80.4%。  相似文献   

11.
产β-1,3-葡聚糖酶植物内生放线菌的筛选及抑菌活性研究   总被引:3,自引:0,他引:3  
本研究采用透明圈法, 对217株植物内生放线菌产β-1,3-葡聚糖酶进行了检测, 结果表明: 45.6%的菌株能够产生β-1,3-葡聚糖酶, 黄瓜内生放线菌中的产酶菌株最多为38个; 不同植物来源的内生放线菌中具有产β-1,3-葡聚糖酶能力的菌株比例不同, 其中黄精中的产酶菌株比例最高, 达到88.9%。产酶菌株粗酶液对油菜菌核病菌的抑菌活性测定结果发现, 36个产酶菌株的粗酶液表现出不同程度的抑制作用, 占总产酶菌株的36.4%, 其中菌株gCLA4的粗酶液能够完全抑制病菌菌丝生长。对gCLA4菌株产酶  相似文献   

12.
β-葡萄糖苷酶来源广泛,几乎存在于所有的生物体中,而不同来源的β-葡萄糖苷酶其性质也各不同.本文利用七叶苷分离培养基从土样中分离筛选出产6种β-葡萄糖苷酶时间较快的菌种,其中发现菌种WGEA1酶活性较高,随后对菌种WGEA1进行初步的鉴定并且采用DNS法测该菌株所产粗酶液的酶学特性.酶学特性表明,WGEA1产的β-葡萄糖苷酶最适温度是在50~55℃之间,最适pH在6~7之间;在低于50℃条件下,pH为5~8时,酶活较稳定,同时在最适反应时间30 min下,金属离子和有机溶剂都对酶活性影响很大,这些发现都为在非水相体系中酶法合成烷基糖苷奠定了一定的基础.  相似文献   

13.
【目的】筛选鉴定1株产β-葡萄糖苷酶的菌株,克隆、表达该菌株中的β-葡萄糖苷酶基因,研究重组酶的酶学性质并进行分子改造。【方法】在自然界中采集土样,筛选到1株具有β-葡萄糖苷酶活性的菌株,对野生菌进行16S rDNA鉴定,比对分析Gen Bank数据库中与野生菌同属的β-葡萄糖苷酶基因序列,设计简并引物PCR扩增基因保守区;设计引物扩增目的基因,以pQE30为表达载体构建重组质粒,转化至大肠杆菌中进行诱导表达;采用镍亲和层析对重组酶进行纯化,研究其酶学性质;采用易错PCR和定点随机突变相结合的方法对野生型β-葡萄糖苷酶进行分子改造。【结果】一个来自于差异柠檬酸杆菌GXW-1的β-葡萄糖苷酶基因被克隆并在大肠杆菌中表达。酶学性质研究结果表明该β-葡萄糖苷酶CBGL的最适温度为45°C,最适p H为6.0,V_(max)值是(0.1704±0.0073)μmol/(mg·min),K_(cat)值为(0.2380±0.0102)/s。CBGL能水解α-pNPG、甜菊苷、黄豆苷和染料木苷。对野生酶进行分子改造,获得V_(max)是野生酶2.54倍的突变体W147F。【结论】CBGL不仅具有β-1,4-糖苷键水解能力,还可能具有一定的α-糖苷键水解酶活性。此外,CBGL还能够水解天然底物甜菊苷、黄豆苷和染料木苷。这些特性表明该β-葡萄糖苷酶在理论研究及在工业中有一定的应用价值。  相似文献   

14.
木霉GXC产β—葡聚糖条件和酶学性质   总被引:3,自引:0,他引:3  
研究了木霉GXC产β-葡聚糖糖的条件,结果表明,最适产酶碳源的麸皮,氮源为硫酸铵,产酶的最适条件为,初始pH为4.0-5.0,30℃培养44h,粗酶液经硫酸铵沉淀,SephadexG-25,Sephadx G-100和DEAE-Sephadex A-50柱层析得到纯β-葡聚糖酶,SDS-PAGE凝胶电泳显示-条带,测得分子量为35kD,该酶最适反应pH5.0,最适反应温度为60℃,在40℃以下,pH4.0-5.0酶活力相对稳定,5.0mmol/L以下的Ca^2 ,Zn^2 和Fe2 ,以及10.0mmol/L以下的Co^2 对酶活力有激活作用,而Cu^2 和Fe^ 具有抑制作用。  相似文献   

15.
以Aspergillus nigerJ5为出发菌株,经Co60γ-射线诱变,筛选到一株β-葡聚糖酶和木聚糖酶活力都较出发菌株高的突变株A-25,其产β-葡聚糖酶和木聚糖酶的合适发酵条件为:大麦粉4%、玉米浆2.5%、NaNO30.4%、Na2HPO40.1%、MgSO4.7H2O0.03%、FeSO4.7H2O0.01%、CaCO30.5%、吐温-800.25%,初始pH6.7,300mL三角瓶的装液量为50mL,在此条件下培养84h,β-葡聚糖酶活力达到1203.9I U/mL,较出发菌株提高35.9%,木聚糖酶活力达到395.2I U/mL,较出发菌株提高27.8%。突变株粗酶液降解工业面粉非淀粉多糖的能力明显高于出发菌株。  相似文献   

16.
目的:克隆解淀粉芽孢杆菌β-1,3-1,4-葡聚糖酶基因(bglA)使其在解淀粉芽孢杆菌CICIM B4081中高效表达,并对重组酶进行酶学性质研究.方法:以解淀粉芽孢杆菌(CICIM B4801)染色体DNA为模板,经过PCR扩增得到了大小约为0.8kb的β-1,3-1,4-葡聚糖酶基因(bglA),构建了重组表达质粒pQ-bglA,通过电转化的方法将其转化人解淀粉芽孢杆菌(CICIM B4801)中.结果:得到了能高效表达β-1,3-1,4-葡聚糖酶的重组解淀粉芽孢杆菌.在250mL摇瓶条件下,重组菌分解地衣多糖的胞外最高酶活达到了1515.7U/mL,重组酶的最适作用温度为55℃,最适反应pH值为6.5.结论:重组菌的β-1,3-1,4-葡聚糖酶的酶活为原始菌株的11.84倍,实现了bglA基因在解淀粉芽孢杆菌中的高效表达.  相似文献   

17.
[目的]以纤维素为唯一碳源,从四川省阿坝自治州黄龙沟的高山低温环境中分离筛选产纤维素酶的耐冷菌,并研究菌株的产酶特征.[方法]根据菌株的ITS序列分析及形态特征,对菌株进行鉴定.利用DNS法测定纤维素酶酶活性.[结果]从四川省阿坝自治州黄龙沟的高山腐殖土中筛选出一株产纤维素酶的耐冷菌HD1031,经鉴定该菌为玫红假裸囊菌(Pseudogymnoascus roseus).该菌可在4℃-25℃生长,最适生长温度为16℃-17℃.该菌在以微晶纤维素和玉米芯粉为碳源、硫酸铵和Tryptone为氮源的培养基中,17℃、160 r/min摇瓶发酵8d后产生纤维素酶,其中内切葡聚糖酶酶活为366.67 U/mL,滤纸酶酶活87.6 U/mL,β-葡萄糖苷酶酶活90.8 U/mL,酶最适反应pH为6.0,最适反应温度为50℃.[结论]筛选获得一株产纤维素酶的耐冷菌HD1031,此菌株所产纤维素酶在20℃-40℃下活性较高,对热敏感,具有低温纤维素酶的特点.  相似文献   

18.
莱氏野村菌产几丁质酶条件及酶学性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对莱氏野村菌(Nomuraea rileyi)菌株CQ031021产几丁质酶条件及酶学性质进行了研究。结果表明:该菌株最适产酶碳源为2.0%(W/V)葡萄糖,氮源为1.2%(W/V)复合氮源(蛋白胨、牛肉膏按1∶1的比例),接种量为孢悬液2mL(1×107个/mL),培养温度28℃,培养液初始pH6.0,培养时间6d;一定浓度的吐温-80对几丁质酶活性有促进作用,而SDS有抑制作用;粗酶液最适反应温度50℃,最适pH6.0,在40℃以下及pH5.5~6.5范围内酶活力较稳定。  相似文献   

19.
【背景】从健康甘草须根中分离获得的一株芽孢杆菌具有高产β-葡萄糖苷酶的活性。【目的】探究分离菌株潜在的产酶遗传信息,为该菌深入研究与工业应用提供数据支撑。【方法】利用七叶苷培养基进行产β-葡萄糖苷酶的益生菌筛选,筛到一株产β-葡萄糖苷酶的芽孢杆菌,采用三代Nanopore PromethION和二代Illumina NovaSeq平台对菌株进行基因组测序与组装、并通过基因预测与功能注释等生物信息分析预测菌株潜在的β-葡萄糖苷酶基因。另外,以β-葡萄糖苷酶活性为指标,研究碳源、氮源、接种量、温度和起始pH对菌株产酶活性的影响。【结果】从甘草须根中分离得到一株具有β-葡萄糖苷酶活性的菌株,通过形态学观察、生理生化和分子生物学试验鉴定为芽孢杆菌属菌株,并命名为Bacillus rugosus A78.1。该菌株基因组大小为4 146 938 bp,G+C含量为43.86%,共编码4 255个基因。在基因组中,共注释到碳水化合物活性酶基因192个,其中β-葡萄糖苷酶基因10个,分别属于GH1和GH3家族基因。在基因本体(GO)、京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)和同源基因簇(clusters of orthologous groups of proteins,COG)数据库分别注释到2 896、4 019和3 657个基因。该菌株基因组测序结果上传至NCBI获得GenBank登录号为CP096590。菌株A78.1产β-葡萄糖苷酶的最佳碳、氮源分别为0.5%葡萄糖、1.0%酵母浸粉,最佳培养条件为温度37℃、3%接种量、pH 6.0,此条件下β-葡萄糖苷酶活力可达到(5.640±0.085) U/mL。【结论】通过全基因组测序分析及产酶优化试验确定了Bacillus rugosus A78.1优良的产β-葡萄糖苷酶能力及在碳水化合物代谢方面的潜力,为该菌株在纤维素分解、糖苷类化合物水解等生物、化工和食品领域的研究与应用提供基础。  相似文献   

20.
对根霉所产纤维素酶酶系进行了分析并研究了部分酶学性质。实验选择超滤和凝胶柱分离相结合的方式提纯纤维素酶,结果显示根霉TC1653纤维素酶系是一个完全酶系,具有一个较为明显的内切葡聚糖酶组分。β-葡萄糖苷酶组分的最适反应温度为70℃,温度高于70℃时,活性迅速下降,但在这种高温下具有最高反应活性的酶很少见,很可能又是一种新的β-葡萄糖苷酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号