首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】对短角球白蚁(Globitermes brachycerastes)肠道元基因组文库中筛选得到的一个新型β-葡萄糖苷酶编码基因bgl17进行酶学性质研究。【方法】通过克隆与异源表达得到纯的Bgl17酶蛋白,根据Bgl17对底物的水解活性测定其稳定性及动力学参数,利用薄层层析确定其水解产物。【结果】该酶属于糖基水解酶第一家族(GHF1),对其特异性底物4-硝基苯基-β-D-吡喃葡萄糖苷(pNPGlc)的最适反应温度为70 °C,最适pH为5.0。在最适反应条件下,该酶以pNPGlc为底物比活力为115.69 U/mg,以水杨苷为底物比活力为297.39 U/mg。以pNPGlc为底物时,其动力学参数Km值和Vmax分别为0.81 mmol/L和227.27 μmol/(mL·min)。在稳定性方面,该酶在50 °C处理1 h仍可保持50%的活性,在pH 5.0和6.0条件下,该酶的半衰期为1 h。【结论】该酶在较高的温度下具有较高的活性,且对水杨苷水解活性高,这点不同于已知的β-葡萄糖苷酶,推测其更有利于木质纤维素复杂结构的降解;该酶的最适温度远高于白蚁生存环境温度,可为研究白蚁降解纤维素的机理提供参考。  相似文献   

2.
【目标】N-乙酰-β-D-氨基葡萄糖糖苷酶(NAGase)是一种重要的几丁质分解酶,能从N-乙酰葡萄糖苷的非还原端催化去除β-1,4-N-乙酰-D-氨基葡萄糖残基,参与了昆虫外骨骼的蜕皮过程。研究蜜蜂该酶的特征有助于阐明其在蜜蜂发育过程中的作用机制。【方法】采用40%-70%硫酸铵分级沉淀、DEAE-纤维素离子交换层析和葡聚糖G-100凝胶过滤层析的方法从意大利蜜蜂Apis mellifera ligustica幼虫体内分离纯化NAGase。以对-硝基苯-N-乙酰-β-D-氨基葡萄糖苷(pNP-NAG)为底物检测该酶的活力,用native PAGE和SDS-PAGE检测酶的纯度。IEF-PAGE测定该酶等电点。葡聚糖G-200凝胶过滤层析测定酶的总分子量。【结果】结果显示,纯化的NAGase酶的比活力为803. 09 U/mg,总分子量为77. 3 kD。结合SDS-PAGE表明该酶由两个具有相同分子量(39 k D)的亚基组成。该酶等电点为4. 8。酶水解底物pNP-NAG的过程遵循米氏方程,米氏常数(Km)和最大反应速度(Vm)分别为0. 11 mmol/L和17. 65μmol/L·min。该酶水解反应的最适pH和最适温度分别为pH 5. 5和60℃。酶催化pNP-NAG反应的活化能为64. 8 k J/mol。Pb2+,Cu2+,Zn2+和Al3+对该酶有不同程度的抑制作用。【结论】本研究描述了意大利蜜蜂NAGase的分离纯化方法及其理化性质,为进一步进行蜜蜂NAGase的结构解析和功能研究奠定基础。  相似文献   

3.
【目的】β-葡萄糖苷酶,又称β-D-葡萄糖苷水解酶,属于纤维素酶类,是一种降解纤维素的关键限速酶。来源于嗜热古菌的β-葡萄糖苷酶已被广泛验证具有酸性高温等特性,已成为高温酶的研究热点之一。本文对尚未报道的来源于嗜热古菌中一种热丝菌(Thermofilum adornatum)的GH3家族的葡萄糖苷酶,进行了原核表达和酶学性质测定,以期找到更优的β-葡萄糖苷酶。【方法】从NCBI数据库中获得了嗜热古菌(T.adornatum)来源的GH3氨基酸序列,构建重组质粒p ET-30a(+)-TaBgl3,并在大肠杆菌(Escherichia coli) BL21(DE3)感受态细胞中诱导表达重组蛋白;采用磁珠纯化,研究其酶学性质。【结果】重组蛋白TaBgl3的分子量为77.0 kDa;酶学性质结果表明,其最适反应条件为80°C和pH 5.0,在70°C保温处理1–4 h,对TaBgl3的酶活力有促进作用,在最适温度80°C处理2 h后,其激活作用更加明显,能提高40%以上的酶活;其在pH 5.0–8.0下37°C保温1 h,仍具有60%以上的活性;底物为对硝基苯-β-D-吡喃葡萄糖苷(p NP...  相似文献   

4.
【目的】获得米曲霉蛋白酶主要成分及其酶学性质。【方法】利用硫酸铵盐析,DEAE-Sepharose FF阴离子交换层析、Phenyl-Sepharose HP疏水层析和Superdex-G75/200凝胶层析对米曲霉所产蛋白酶系进行分离纯化,SDS-PAGE检测蛋白酶纯度和分子量,采用高效液相凝胶色谱分析两种蛋白酶酶解产物。【结果】从米曲霉所产蛋白酶系中分离纯化获得两种蛋白酶组分P1和P2,分子质量分别约为37 kD和45 kD。以酪蛋白为底物时,P1的Km=8.36 g/L,Vm=12.95μg/(mL·min),最适反应条件为pH 8.0、45°C;P2的Km=4.11 g/L,Vm=4.86μg/(mL·min),最适反应条件为pH 7.0、45°C。两种蛋白酶均对酪蛋白水解活性最高,而对牛血清蛋白的水解活性很低。P1和P2分别酶解大豆分离蛋白后水解产物中肽分子质量分布呈现出一定的差异。【结论】两种蛋白酶的酶学性质存在差异;两者对疏水氨基酸构成的肽键具有选择性,但其作用基团存在特异性。这些研究结果将为米曲霉所产蛋白酶在食品上的应用提供指导。  相似文献   

5.
利用垂直板凝胶制备电泳从黑曲霉(Aspergillus niger,AS 3.316)中分离提纯了β-D-葡萄糖苷酶(EC3.2.1.21),经凝胶电泳鉴定为单一带。酶作用的最适pH为4.4,在pH4.0—6.2稳定;最适温度65℃,热稳定性较好,于60℃保温4小时,活力保留80%。此酶作用于纤维二糖的Km值为6.09mM。聚丙烯酰胺薄层等电聚焦测得其pI值为5.5;用SDS凝胶电泳测得其分子量为77000。此酶不仅能水解纤维二糖和对硝基苯-β-D-葡萄糖苷,还能微弱地水解对硝基苯β-D-半乳糖苷和β-D-木糖苷。金属离子Fe~(2+)、Hg~(2+)、Cu~(2+)、Al~(3+)、Hg~+和Ag~+等对此酶有不同程度的抑制作用,蛋白质侧链修饰剂N-溴代琥珀酰亚胺对此酶有较强的抑制作用,2-羟基-5-硝基溴苯对酶也有一定的抑制作用,推测色氨酸残基对β-D-葡萄糖苷酶的活力是非常必要的。  相似文献   

6.
戴爽  李荷 《微生物学通报》2021,48(8):2524-2533
【背景】β-葡萄糖苷酶(β-Glucosidase,EC3.2.1.21)是3种纤维素酶中的重要成分之一。目前工业用纤维素酶大都来源于木霉等真菌,较少来源于细菌,而且在应用中还存在反应条件(温度、pH等)适用范围窄、酶活力较低、获取成本偏高等问题,这大大限制了β-葡萄糖苷酶的应用。从秸秆还田土壤细菌中筛选β-葡萄糖苷酶有极大地可能性筛选出酶学性质较好的酶,从而解决现存的工业问题。【目的】从土壤中筛选β-葡萄糖苷酶,通过基因重组、表达优化和蛋白纯化获得一株新型β-葡萄糖苷酶,探究其酶学性质,为其在工业上的应用奠定基础。【方法】利用功能筛选法从土壤中筛选出β-葡萄糖苷酶,全长为747 bp,命名为Bgl747,构建重组表达质粒pET-28a-Bgl747,以Escherichia coli BL21(DE3)为宿主菌株,经IPTG诱导实现可溶性表达并优化表达条件,通过His标签蛋白纯化试剂盒纯化获得纯化酶,探究其酶学性质。【结果】β-葡萄糖苷酶Bgl747属于BglB超家族,分子量为27.23 kD,最适反应温度为45°C,最适p H 4.0;最佳诱导条件:当OD600为1.0,加入终浓度为0.6 mmol/L的IPTG,于37°C、220 r/min诱导10 h后β-葡萄糖苷酶Bgl747蛋白获得最高表达量1.82 mg/m L;底物为对硝基苯-β-D-半乳糖苷(p-Nitrophenyl-β-D-Galactopyranoside,p NPG)时的比酶活225.07 U/mg,米氏常数Km值和最大反应速率Vmax分别为0.268mmol/L、547.23μmol/(L·min);1mmol/LK+、1 mmol/L和10 mmol/L Fe2+、30%甲醇、30%乙醇、1 mmol/L和10 mmol/L盐酸胍对酶活都有促进作用,30%TritonX-100及10 mmol/L SDS抑制其酶活效果较为明显;该酶受到产物葡萄糖的反馈抑制,葡萄糖浓度越高,抑制效果越明显,但当葡萄糖浓度为1 mol/L时,酶活仍保持50%以上。【结论】Bgl747反应温度范围较广且稳定,酶学性质优异,为其在纤维素降解等工业应用奠定基础。  相似文献   

7.
【目的】筛选鉴定1株产β-葡萄糖苷酶的菌株,克隆、表达该菌株中的β-葡萄糖苷酶基因,研究重组酶的酶学性质并进行分子改造。【方法】在自然界中采集土样,筛选到1株具有β-葡萄糖苷酶活性的菌株,对野生菌进行16S rDNA鉴定,比对分析Gen Bank数据库中与野生菌同属的β-葡萄糖苷酶基因序列,设计简并引物PCR扩增基因保守区;设计引物扩增目的基因,以pQE30为表达载体构建重组质粒,转化至大肠杆菌中进行诱导表达;采用镍亲和层析对重组酶进行纯化,研究其酶学性质;采用易错PCR和定点随机突变相结合的方法对野生型β-葡萄糖苷酶进行分子改造。【结果】一个来自于差异柠檬酸杆菌GXW-1的β-葡萄糖苷酶基因被克隆并在大肠杆菌中表达。酶学性质研究结果表明该β-葡萄糖苷酶CBGL的最适温度为45°C,最适p H为6.0,V_(max)值是(0.1704±0.0073)μmol/(mg·min),K_(cat)值为(0.2380±0.0102)/s。CBGL能水解α-pNPG、甜菊苷、黄豆苷和染料木苷。对野生酶进行分子改造,获得V_(max)是野生酶2.54倍的突变体W147F。【结论】CBGL不仅具有β-1,4-糖苷键水解能力,还可能具有一定的α-糖苷键水解酶活性。此外,CBGL还能够水解天然底物甜菊苷、黄豆苷和染料木苷。这些特性表明该β-葡萄糖苷酶在理论研究及在工业中有一定的应用价值。  相似文献   

8.
【目的】分离纯化米曲霉蛋白酶的主要组分,分析其酶学特性,并应用于酪蛋白磷酸肽(Casein phosphopeptides,CPPs)的制备。【方法】采用硫酸铵盐析、DEAE-Sepharose FF阴离子交换层析和Butyl-sepharose HP疏水层析对米曲霉蛋白酶进行分离纯化,SDS-PAGE检测分子量与纯度,MALDI-TOF-MS检测酶切位点。【结果】得到一种蛋白酶组分(命名为PE),分子量大小为58 kD左右。该酶最适反应条件为55 °C,pH 8.0,酶活被Fe3+抑制,被Mn2+激活。以酪蛋白为底物时,Km=0.36 g/L,最大反应速率Vm=18.18 mg/(L?min)。蛋白酶PE对牛胰岛素B链上-Leu-Cys-、-Val-Glu-、-Tyr-Leu-和-Arg-Gly-组成的肽键有较高的切割能力,酶切位点较多。利用其水解酪蛋白,通过钡-乙醇沉淀法得到CPPs,产率为15.87%,摩尔氮磷比r (N/P)为6.17,得到的CPPs可以使钙沉淀推迟35 min。【结论】利用米曲霉蛋白酶水解酪蛋白产生CPPs,为其在功能性食品加工方面的应用提供有利的参考。  相似文献   

9.
一株嗜热毛壳菌β-葡萄糖苷酶的分离纯化及特性   总被引:7,自引:2,他引:5  
研究了液体发酵嗜热毛壳菌Chaetomium thermophile产生的β-葡萄糖苷酶的分离纯化及特性。粗酶液经硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子层析、Phenyl-Sepharose 疏水层析、Sephacryl S-100分子筛层析等步骤后获得凝胶电泳均一的β-葡萄糖苷酶。经12.5%SDS-PAGE和凝胶过滤层析方法分别测得该酶的分子量大小约为78.4kDa和81kDa。该酶反应的最适温度和pH值分别为60℃和4.5-5.0。有较好的酸稳定性和热稳定性。金属离子对β-葡萄糖苷酶的活性影响较大, 其中Ca2+对酶有激活作用, 而Ag+、Cu2+ 、Hg2+对酶有显著的抑制作用。该酶对水杨苷具有很强的底物特异性。  相似文献   

10.
【背景】低温β-半乳糖苷酶能在低温下仍保持较高的乳糖水解活性,筛选酶学特性适合在牛乳体系中高效水解乳糖的β-半乳糖苷酶生产菌株,是低乳糖牛乳加工产业关注的焦点。【目的】对天山中国一号冰川沉积物中分离的一株产低温β-半乳糖苷酶菌株的产酶条件和酶学特性进行研究。【方法】结合X-Gal平板法初筛和测定粗酶液酶活复筛,获得产低温β-半乳糖苷酶的菌株。通过形态学、生理生化试验及16S rRNA基因测序分析对筛选菌株进行鉴定,单因素摇瓶实验优化菌株的产酶条件,硫酸铵分级沉淀初步纯化β-半乳糖苷酶并对其酶学特性进行分析。【结果】通过形态学、生理生化特征和16S rRNA基因鉴定,确定菌株LW106为微杆菌属(Microbacterium)菌株;该菌株最适产酶温度为25°C,最佳产酶碳源为可溶性淀粉,培养基初始pH为7.0,接种量为3%;对初步纯化的低温β-半乳糖苷酶酶学性质的研究表明,LW106所产β-半乳糖苷酶的最适pH为6.0,最适反应温度为35°C,4°C时酶活为最大酶活的78%,4°C和pH 7.0时的稳定性最好,10 mmol/L的Na+对酶活性基本没有抑制作用,Ca~(2+)对酶活性具有一定的激活作用。【结论】菌株LW106所产低温β-半乳糖苷酶的酶学特性表明该酶在乳品低温加工领域具有进一步研究和应用的价值。  相似文献   

11.
黑曲霉β-葡萄糖苷酶的催化性质   总被引:3,自引:0,他引:3  
通过测定黑曲霉β-葡萄糖苷酶的底物特异性,表明该酶不仅能水解纤维二糖和对硝基苯-β-D葡萄糖苷,还能微弱地水解对硝基苯-β-D-半乳糖苷和β-D-木糖苷。Ag~+、Cu~(2+)和Hg~(2+)对该酶有较强的抑制作用。该酶水解对硝基苯-β-D-葡萄糖苷、水杨苷和纤维二糖的Km值分别为2.32、19.11和30.18mmol/L,V_(max)则分别为412、237和198μmol·min~(-1)·mg~(-1),Lineweaver-Burk作图法表明,D-葡萄糖和δ-葡萄糖酸内酯对该酶显示竞争性抑制作用,其Ki分别为5.17和1.31mmol/L。  相似文献   

12.
产壳聚糖酶菌株的筛选、鉴定及酶学特性分析   总被引:1,自引:0,他引:1  
王艳君  卓少玲  陈盛  杨谦 《微生物学通报》2012,39(12):1734-1745
【目的】利用筛选培养基,从福建沿海潮间带泥样中分离筛选产壳聚糖酶的菌株,并研究菌株的产酶特性。【方法】通过形态学观察,结合26S rDNA序列进行分类鉴定,采用DNS法测定酶活力。【结果】筛选得到产壳聚糖酶的菌株KQ-1002与草酸青霉(Penicillium oxalicum)的同源性为99%,并初步鉴定为青霉属的一种。发酵培养的最适温度为30°C,最适碳源为1.0%水溶性壳聚糖,最适氮源为1.87%(NH4)2SO4,最适pH为6.0。该菌株液体发酵培养72 h产壳聚糖酶活性最高,经优化后最高产酶量为18 U/mL。纯化后的壳聚糖酶经SDS-PAGE分析其分子量约40 kD。酶促反应最适pH为5.0,最适反应温度为55°C,Km值为1.293 g/L。在离子浓度为1.0×10 3mol/L时,金属离子Cu2+、Hg2+、Ag+对酶的活性均有强烈的抑制作用。壳聚糖酶对不同底物及脱乙酰度的壳聚糖具有不同的降解作用。【结论】筛选获得产壳聚糖酶的真菌菌株KQ-1002的壳聚糖酶活力经优化后提高了约7倍,是一株具有研究和应用潜力的产壳聚糖酶菌株。  相似文献   

13.
一株产琼胶酶细菌的分离、鉴定及其琼胶酶基本性质   总被引:1,自引:0,他引:1  
【目的】分离海洋来源的琼胶酶产生菌,对其进行分类鉴定,并研究其所产琼胶酶的基本酶学性质,为琼胶酶的应用研究及开发利用奠定基础。【方法】通过以琼脂为唯一碳源的选择培养基分离产琼胶酶的菌株;利用16S rRNA基因序列分析、表型和生理生化特征对菌株进行鉴定;通过DNS-还原糖法测定琼胶酶活性;利用显色底物法测定琼胶酶的类型;对菌株所产琼胶酶粗酶的酶学性质进行初步研究。【结果】分离到一株产琼胶酶的菌株NTa,16S rRNA基因序列分析显示该菌株属于寡养单胞菌属(Stenotrophomonas sp.);该菌株主要产胞外琼胶酶,可分泌α-琼胶酶和β-琼胶酶;琼胶酶粗酶的最适反应温度和pH分别为40℃和7.0,并且琼胶酶在温度低于30℃,pH为7.0-9.0时稳定;Ca2+对琼胶酶粗酶具有促进作用,Ag+、Fe2+、Ba2+、Mn2+、Cu2+、Zn2+和Fe3+均可不同程度地抑制酶的活性;EDTA对琼胶酶粗酶活性具有抑制作用;琼胶酶粗酶对检测的抑制剂、去垢剂及变性剂有较好的抗性。【结论】海洋细菌Stenotrophomonas sp.NTa是一种新型的产琼胶酶菌株,可同时分泌α-琼胶酶和β-琼胶酶,具有潜在开发利用价值。  相似文献   

14.
黑曲霉β-葡萄糖苷酶的酶学特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究黑曲霉β-葡萄糖苷酶的酶学特性,采用酶学研究方法,通过硫酸铵沉淀、Sephadex G-25脱盐和Sephadex G-100纯化了β-葡萄糖苷酶,并进行了黑曲霉β-葡萄糖苷酶的最适反应温度、最适pH、热稳定性、pH稳定性及米氏常数等特性研究,采用SDS-PAGE凝胶电泳测定了分子量。研究表明,β-葡萄糖苷酶的最适反应温度为70℃、最适反应pH为4.5;在40、50和60℃下较稳定,80℃以上稳定性差;β-葡萄糖苷酶在pH为3、7、8、9的缓冲液中的稳定性很差,在pH为4、5、6的缓冲液中稳定性较好,其中在pH为5时,稳定性最好;酶的Km=41.67 mmol/L,Vmax=23.81 U/L;其分子量为65.2 ku。β-葡萄糖苷酶在饲料工业具有良好的应用前景。  相似文献   

15.
日本根霉IFO5318胞外β—葡萄糖苷酶的纯化及部分特性   总被引:5,自引:0,他引:5  
采用硫酸铵沉淀及柱层析等步骤纯化了日本根霉IFO5318的β—葡萄糖苷酶,回收率为22%。该酶分子量约为4.0×10~5,由四个相同大小的亚基组成;最适反应温度55℃,最适反应pH5.5;对热较敏感,但能在较大的pH范围内保持稳定。用对硝基苯基—β-D-吡喃葡糖苷为底物,测得的K_m和V_(max)值分别为0.825mg·ml~(-1)和135.4μmol·min~(-1)·mg~(-1)。该酶对纤维二糖的水解能力最强,SDS、Fe~(3 )、Hg~2 )等对酶活力有抑制作用。  相似文献   

16.
【背景】β-葡萄糖苷酶(EC 3.2.1.21,β-glucosidase),是纤维素分解酶系中的重要组成部分,目前工业上应用的β-葡萄糖苷酶多数来源于植物和真菌,来源于细菌的较少,且应用中还存在酶活力偏低、热稳定性差、反应条件适用范围窄、酶活力易受产物反馈抑制等问题,增加了经济成本。嗜热微生物具有特殊的遗传信息资源,极有可能从中挖掘到酶学性质优良的新型β-葡萄糖苷酶,从而解决工业难题。【目的】从嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans)基因组中挖掘新型β-葡萄糖苷酶基因,通过基因重组、异源表达和蛋白纯化技术制备新型β-葡萄糖苷酶,并探究其酶学性质,为新型β-葡萄糖苷酶在纤维素水解等领域的应用奠定基础。【方法】人工合成新型β-葡萄糖苷酶基因bgl52,构建重组表达质粒pET22b-bgl52,并用电脉冲法转化到大肠杆菌BL21(DE3)中实现可溶性表达,利用Ni-NTA亲和层析纯化得到高纯度的β-葡萄糖苷酶Bgl52。【结果】实现重组表达质粒pET22b-bgl52在大肠杆菌BL21(DE3)中的可溶性表达,并获得β-葡萄糖苷酶Bgl52纯蛋白,蛋白分子量为52 kD,在70°C和pH 6.5条件下表现出最佳活性;以p-nitrophenyl-β-D-glucopyranoside (p NPG)为底物时的比酶活为223.7±5.3 U/mg;K_m为9.3±1.2 mmol/L,V_(max)为270.3±4.3μmol/(min·mg);Bgl52偏好性水解β-1,4糖苷键的底物;Fe~(2+)和Mg~(2+)对酶的激活作用明显,Co~(2+)、Cu~(2+)和SDS可抑制其活性;Bgl52是少有的几种葡萄糖和木糖激活型β-葡萄糖苷酶之一,当反应体系中外源添加0.2 mol/L葡萄糖时可提升活力至2.84倍,外源添加0.4 mol/L木糖时可提升活力至3.24倍,同时Bgl52在生理条件下基本不受产物的反馈抑制。【结论】利用嗜热微生物基因组中蕴藏的遗传信息资源,通过现代生物技术方法,可以从中挖掘到酶学性质优良的β-葡萄糖苷酶,为其在纤维素降解等工业领域的应用奠定基础。  相似文献   

17.
日本根霉IFO5318胞外β-葡萄糖苷酶的纯化及部分特性   总被引:1,自引:0,他引:1  
采用硫酸铵沉淀及柱层析等步骤纯化了日本根霉IFO5318的β—葡萄糖苷酶,回收率为22%。该酶分子量约为4.0×10~5,由四个相同大小的亚基组成;最适反应温度55℃,最适反应pH5.5;对热较敏感,但能在较大的pH范围内保持稳定。用对硝基苯基—β-D-吡喃葡糖苷为底物,测得的K_m和V_(max)值分别为0.825mg·ml~(-1)和135.4μmol·min~(-1)·mg~(-1)。该酶对纤维二糖的水解能力最强,SDS、Fe3+、Hg2+等对酶活力有抑制作用。  相似文献   

18.
【背景】通过培养微生物来获得新β-葡萄糖苷酶因只有少部分微生物可以被培养而受到限制,但宏基因组学技术可以挖掘非培养微生物来源的β-葡萄糖苷酶资源。【目的】利用宏基因组学技术挖掘土壤微生物来源的新型β-葡萄糖苷酶,并对其酶学性质进行初步分析。【方法】构建土壤微生物的宏基因组文库,利用七叶苷平板显色法对所构建的文库进行筛选获得阳性克隆,并对阳性克隆所含的β-葡萄糖苷酶基因进行异源表达和生物化学特性分析。【结果】通过筛选文库中的62万个克隆,获得一个具有β-葡萄糖苷酶活性的克隆,其插入片段中包含一个2 301 bp的ORF(YNBG3),蛋白同源性分析显示其属于β-葡萄糖苷酶第三家族。对YNBG3酶的生化分析确定其最佳反应温度为53°C,最适p H为5.2,有较好的热稳定性,对一定浓度范围内的DMSO、丙酮、乙醇等有机试剂有较好的耐受性,EDTA和尿素可增加该酶的活性。【结论】利用宏基因组学技术获得了一个有较好热稳定性及耐受一定浓度有机试剂和尿素的新β-葡萄糖苷酶。  相似文献   

19.
本研究首次发现Monodictyx asperospera(Cooke&Massee)Ellis具有较好的产漆酶能力.粗酶液经硫酸铵盐析、DEAE-纤维素层析及丙烯葡聚糖凝胶S-300层析纯化,纯化倍数为8.1,回收率为5.7%.漆酶分子量约为77kD,最适反应温度为55℃,最适反应pH6.0,以丁香醛连氮为底物时Km为0.163mm0l/L,Vmax为0.194 mmol(L·min),含糖量为18.14%,Cu2+对漆酶有明显抑制作用.  相似文献   

20.
【目的】克隆嗜热脱氮土壤芽孢杆菌中的β-葡萄糖苷酶基因bglB,在E.coli中异源表达,纯化并研究其酶学性质。【方法】利用PCR技术从嗜热脱氮土壤芽孢杆菌的基因组DNA中克隆得到bglB基因,将该基因克隆到表达载体pGEX-2TL上并在大肠杆菌BL21(DE3)中表达,对纯化后的β-葡萄糖苷酶的酶学性质及寡聚状态进行分析。【结果】重组表达的β-葡萄糖苷酶最适温度为65°C,最适pH为7.0,能在pH 5-10、60°C下稳定存在4 h,并能在较高的离子强度(880 mmol/L K+)下发挥其功能。Al3+离子对其有强烈的激活作用,Co2+有一定的抑制作用。最适反应条件下该酶比活力为0.043 IU/mg。该酶具有多种寡聚体形式,这些寡聚体均有β-葡萄糖苷酶活性。【结论】获得一个耐热耐盐的中性β-葡萄糖苷酶,为进一步研究β-葡萄糖苷酶的催化作用机理,提高其热稳定性提供一定的帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号