首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
建立了套式RT-PCR与限制性内切酶酶切相结合的区别猪瘟兔化弱毒疫苗株与猪瘟病毒田间分离株的诊断方法。通过对猪瘟兔化弱毒疫苗株与猪瘟石门株E2基因主要抗原编码区序列进行限制性内切酶酶切位点分析,分别找出猪瘟兔化弱毒疫苗株与猪瘟石门株各自独有的限制性内切酶酶切位点,结果二者分别有10和16个独有的限制性内切酶的酶切位点;分别对17株猪瘟病毒E2基因主要抗原编码区序列进行这26个限制性内切酶酶切位点分析,结果表明有3个限制性内切酶(HgaI、Hin8I及Hsp92I)  相似文献   

2.
猪瘟病毒强弱毒株和野毒株E2全基因序列测定及比较分析   总被引:15,自引:0,他引:15  
为了比较猪瘟病毒 (HCV)野毒株、疫苗株及标准株之间E2基因抗原区域的差异 ,采用RT PCR扩增了HCV石门株、兔化弱毒疫苗株、野毒 0 3及 0 7株的囊膜糖蛋白E2 (gp55)全基因的cDNA片段 ,分别克隆于pGEM T载体中并对其进行了核苷酸序列测定及氨基酸序列的推导 ,同时进行了同源性比较及E2结构与功能的分析。所测 4株HCVE2基因的长度均为1 2 73bp,所编码的氨基酸序列均包括部分信号肽序列和完整的跨膜区序列 ,共由 381个氨基酸组成 ;4个毒株E2蛋白N末端的 683位至 690位信号肽序列 (WLLLVTGA)和C末端 1 0 30~1 0 63位跨膜区均为保守序列 ,而且具疏水性 ;N末端抗原功能区中 ,4个E2蛋白与其它所比较序列在位于第 753位至 759位氨基酸处 ,均有一段保守序列RYLASLH ,无一氨基酸发生变异 ,为亲水性 ,在整个E2蛋白抗原谱中抗原性峰值为最高 ,推测对抗原性产生起重要作用 ;4个E2蛋白的氨基酸序列中均含有 1 5个半胱氨酸 (Cys)残基 ,其数量及位置与国外五株HCV(Brescia ,C ,Alfort.ALD和GPE)完全一致。表明…  相似文献   

3.
为了构建猪瘟重组腺病毒载体疫苗,通过细菌内同源重组法构建了含有猪瘟病毒E2基因的重组腺病毒rAdV-E2.测定其一步生长曲线,同时用间接免疫荧光试验和Western blotting检测外源基因表达,然后用rAdV-E2免疫家兔,免疫后6周用猪瘟兔化弱毒疫苗株(c株)进行攻击,攻毒后3 d取其脾脏,用实时荧光定量RT-PCR检测C株病毒RNA.结果表明,该重组腺病毒传至第10代时,毒价可达1.0×1010TCID<,50/mL;外源基因可在其中得到稳定表达;rAdV-E2接种兔免疫后2周产生猪瘟特异性抗体,免疫后5 W抗体达到峰值,攻毒后rAdV-E2接种兔和C株接种兔均未出现定型热反应,从其脾脏也未检测到C株病毒RNA,而野生型腺病毒接种兔均出现了定型热反应,并且从其脾脏检测大量C株病毒RNA,其含量达到了103拷贝/μL以上.由此表明,rAdV-E2可望开发为猪瘟候选疫苗.  相似文献   

4.
猪瘟病毒E2基因真核表达质粒的构建及基因疫苗的研究   总被引:31,自引:1,他引:30  
构建了猪瘟病毒(classical swine fever virus, CSFV)主要保护性抗原E2基因4种不同的真核表达质粒.小鼠免疫试验表明,E2基因上不同的功能区对基因疫苗的免疫应答有很大影响,有信号肽序列的E2基因可诱导产生特异性免疫反应,且无跨膜区序列的E2基因所诱导的免疫应答反应比有跨膜区序列的强,而无信号肽序列的E2基因则不能诱导产生CSFV特异性的免疫反应.攻毒保护试验表明,免疫家兔最少可抵抗10个最小感染剂量(MID)的猪瘟兔化弱毒苗(Hog cholera lap-inized virus, HCLV)的攻击;免疫猪可抵抗致死剂量的CSFV石门株强毒的攻击.  相似文献   

5.
皮肤寻常疣的发生与多种基因型别HPV的感染密切相关.本研究利用PCR方法对1例临床罕见的寻常疣患者感染的HPV-2毒株LCR及E2基因序列进行扩增、测序,分别构建含HPV-2变异株及原毒株LCR的重组CAT基因报导质粒pBLCAT-LCR和表达突变及野生型E2蛋白的重组真核表达质粒pcDNA3.1-E2,通过瞬时转染HeLa细胞,研究变异株启动子活性及突变E2蛋白的转录抑制作用.结果显示,患者感染的HPV-2变异株LCR及E2基因均存在多处点突变.变异株早期启动子活性明显高于原毒株;突变的E2蛋白转录抑制作用较野生型E2蛋白显著降低;变异株LCR上E2结合位点核苷酸的突变明显降低E2蛋白对病毒早期启动子的抑制作用.提示HPV-2变异株启动子活性增强及突变E2蛋白转录抑制作用的降低与这一罕见巨大寻常疣临床表型之间存在着重要的联系.  相似文献   

6.
RT-PCR和酶切方法区分猪瘟疫苗毒与野毒的研究   总被引:8,自引:0,他引:8  
建立了套式RT-PCR与限制性内切酶酶切相结合的区别猪瘟兔化弱毒疫苗株与猪瘟病毒田间分离株的诊断方法。通过对猪瘟兔化弱毒疫苗株与猪瘟石门株E2基因主要抗原编码区序列进行限制性内切酶酶切位点分析,分别找出猪瘟兔化弱毒疫苗株与猪瘟石门株各自独有的限制性内切酶酶切位点,结果二者分别有10和16个独有的限制性内切酶的酶切位点;分别对17株猪瘟病毒E2基因主要抗原编码区序列进行这26个限制性内切酶酶切位点分析,结果表明有3个限制性内切酶(HgaI、Hin8I及Hsp92I)的酶切位点在HCLV株序列是独有的;利用HgaI限制性内切酶分别对HCLV、HCVSM及5株不同基因群的猪瘟病毒田间分离株进行酶切鉴定,结果只有HCLV株能够被HgaI酶切成2个片段,而其它的毒株则不能被切开。同时测定了套式RT-PCR方法的敏感性及特异性,结果其敏感性可达到0.2MLD,而对BDV以及BVDV均不能特异扩增。本方法的建立无疑对猪瘟在我国的控制和消灭具有重要的意义。  相似文献   

7.
用重组PCR技术对猪瘟病毒石门株E2基因进行了定点突变, 然后将突变后的基因克隆至表达载体质粒pET-28a(+)中,构建成重组质粒pETE2。将pETE2转入受体菌BL21(DE3)plysS中,在IPTG的诱导下, 重组转化菌可高效表达目的基因, 表达量平均可达菌体蛋白总量的28%。免疫印迹和间接ELISA表明所表达的蛋白是CSFV特异性的。此重组蛋白免疫的家兔可抵抗猪瘟兔化弱毒的攻击。  相似文献   

8.
根据马传贫强毒株EIAV-L和疫苗株EIAV-FDD表面蛋白gp90的N-连接糖基化的变化规律,采用PCR定点突变的方法,对全长感染性克隆pLGFD3-8上的N-连接糖基化的差异区域进行改造后,构建成含有3个N-连接糖基化位点突变的感染性克隆pLGNl91N236N246.将其转染驴胎皮肤细胞(FDD),通过用逆转录酶活性、间接免疫荧光和RT-PCR方法检测而确定其感染性.结果表明,在FDD细胞中盲传三代后,在细胞培养物中可检测到逆转录酶活性,RT-PCR和间接免疫荧光检测均呈阳性,电镜下见到典型的EIAV颗粒.这一结果可能对N-连接糖基化在我国马传贫弱毒疫苗致弱机理的作用研究而奠定良好的基础.  相似文献   

9.
在国内首次对犬冠状病毒大熊猫野毒株(CCVDXMV)纤突蛋白基因进行了克隆和序列测定。该基因全长4362bp,编码1453个氨基酸,N端前18个氨基酸为推测的信号肽序列,后1435个氨基酸构成成熟蛋白。与GenBank中已发表的11个CCV毒株s基因相比,s基因核苷酸序列同源性在40.2%-99.5%之间;推导的氨基酸序列同源性在15.9%-99.O%之间。DXMV株s基因变异区主要集中在该基因前1/2处,其中350.370、439.478、1718.1818三个区域碱基变异较大,而1060.1700区却十分保守。基于s全基因及其蛋白的聚类分析表明,DXMV株与K378、NVSL和USpatent株亲源关系最近。推导的DXMV株s蛋白氨基酸序列潜在的N-联糖基化位点与CCV强毒V54相同,为34个,比Insavc.1弱毒多一个;其中第566.568位糖基化位点为多数强毒拥有而弱毒没有的。另外,DXMV株S蛋白疏水性及抗原表位与其它毒株有一定的差异,这些差异对DXMV株致病性和免疫原性等影响尚待进一步的研究。  相似文献   

10.
本研究对猪细小病毒(porcine parvovirus,PPV)自然弱毒N株(PPV-N)VP2基因进行克隆、测序并利用生物信息学技术分析PPV-NVP2蛋白基因的同源性、遗传进化、密码子偏爱性、糖基化位点、磷酸化位点、B细胞抗原表位及其二、三级结构。结果表明:成功扩增出包含VP2基因完整目的片段(1901bp),构建了VP2基因的克隆重组质粒pMD18-T-VP2,测序获取VP2基因序列(1740bp)并将该序列登录到GenBank(HM355807)。PPVVP2基因属高度保守的基因;PPV-N株与PPV弱毒代表毒株NADL-2株亲缘性近,推测PPV-N株属于弱毒株;PPV-N株VP2基因氨基酸密码子偏爱以A结尾的密码子;PPV-N株VP2蛋白可能存在7个糖基化位点,其丝氨酸、苏氨酸和酪氨酸可能分别有9、7、8个磷酸化位点,可能存在24个B细胞抗原表位;PPV-N株VP2蛋白二级结构预测,α-螺旋占11.74%,β-折叠占22.97%,无规则卷曲占65.28%,而三维结构预测VP2蛋白主要以无规则卷曲为主,存在多个螺旋和折叠区域。本研究结果为进一步阐释PPV-N株自然弱毒的分子机理提供依据,并为PPV分子诊断试剂及基因工程疫苗研究等提供有益借鉴。  相似文献   

11.
Envelope proteins E1 and E2 of the hepatitis C virus (HCV) play a major role in the life cycle of a virus. These proteins are the main components of the virion and are involved in virus assembly. Envelope proteins are modified by N-linked glycosylation, which is supposed to play a role in their stability, in the assembly of the functional glycoprotein heterodimer, in protein folding, and in viral entry. The effects of N-linked glycosylation of HCV protein E1 on the assembly of structural proteins were studied using site-directed mutagenesis in a model system of Sf9 insect cells producing three viral structural proteins with the formation of virus-like particles due to the baculovirus expression system. The removal of individual N-glycosylation sites in HCV protein E1 did not affect the efficiency of its expression in insect Sf9 cells. The electrophoretic mobility of E1 increased with a decreasing number of N-glycosylation sites. The destruction of E1 glycosylation sites N1 or N5 influenced the assembly of the noncovalent E1E2 glycoprotein heterodimer, which is the prototype of the natural complex within the HCV virion. It was also shown that the lack of glycans at E1 sites N1 and N5 significantly reduced the efficiency of E1 expression in mammalian HEK293 T cells.  相似文献   

12.
13.
Deglycosylation of viral glycoproteins has been shown to influence the number of available epitopes and to modulate immune recognition of antigens. We investigated the role played by N-glycans in the immunogenicity of hepatitis C virus (HCV) E1 envelope glycoprotein, a naturally poor immunogen. Eight plasmids were engineered, encoding E1 protein mutants in which the four N-linked glycosylation sites of the protein were mutated separately or in combination. In vitro expression studies showed an influence of N-linked glycosylation on expression efficiency, instability, and/or secretion of the mutated proteins. Immunogenicity of the E1 mutants was studied in BALB/c mice following intramuscular and intraepidermal injection of the plasmids. Whereas some mutations had no or only minor effects on the antibody titers induced, mutation of the fourth glycosylation site (N4) significantly enhanced the anti-E1 humoral response in terms of both seroconversion rates and antibody titers. Moreover, antibody induced by the N4 mutant was able to recognize HCV-like particles with higher titers than those induced by the wild-type construct. Epitope mapping indicated that the E1 mutant antigens induced antibody directed at two major domains: one, located at amino acids (aa) 313 to 332, which is known to be reactive with sera from HCV patients, and a second one, located in the N-terminal domain of E1 (aa 192 to 226). Analysis of the induced immune cellular response confirmed the induction of gamma interferon-producing cells by all mutants, albeit to different levels. These results show that N-linked glycosylation can limit the antibody response to the HCV E1 protein and reveal a potential vaccine candidate with enhanced immunogenicity.  相似文献   

14.
To examine the role of the glycans of human immunodeficiency virus type 1 transmembrane glycoprotein gp41, conserved glycosylation sites within the env sequence (Asn-621, Asn-630, and Asn-642) were mutated to Gln. The mutated and control wild-type env genes were introduced into recombinant vaccinia virus and used to infect BHK-21 or CD4+ CEM cells. Mutated gp41 appeared as a 35-kDa band in a Western blot (immunoblot), and it comigrated with the deglycosylated form of wild-type gp41. Proteolytic cleavage of the recombinant wild-type and mutant forms of the gp160 envelope glycoprotein precursor was analyzed by pulse-chase experiments and enzyme-linked immunosorbent assay: gp160 synthesis was similar whether cells were infected with control or mutated env-expressing recombinant vaccinia virus, but about 10-fold less cleaved gp120 and gp41 was produced by the mutated construct than the control construct. The rates of gp120-gp41 cleavage at each of the two potential sites appeared to be comparable in the two constructs. By using a panel of antibodies specific for gp41 and gp120 epitopes, it was shown that the overall immunoreactivities of control and mutated gp41 proteins were similar but that reactivity to epitopes at the C and N termini of gp120, as present on gp160 produced by the mutated construct, was enhanced. This was no longer observed for cleaved gp120 in supernatants. Both gp120 proteins, from control and mutated env, were expressed on the cell surface under a cleaved form and could bind to membrane CD4, as determined by quantitative immunofluorescence assay. In contrast, and despite sufficient expression of env products at the cell membrane, gp41 produced by the mutated construct was unable to induce membrane fusion. Therefore, while contradictory results reported in the literature suggest that gp41 individual glycosylation sites are dispensable for the bioactivity and conformation of env products, it appears that such is not the case when the whole gp41 glycan cluster is removed.  相似文献   

15.
The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes.  相似文献   

16.
D X Zheng  L Dickens  T Y Liu  H L Nakhasi 《Gene》1989,82(2):343-349
A full-length cDNA clone for the 24S subgenomic mRNA of the vaccine strain (HPV77) of rubella virus has been isolated from a cDNA library made from the RNAs of infected cells. Starting from the first Met start codon, the 24S mRNA codes for a precursor protein of 1063 amino acids (aa). This precursor encodes a capsid protein of 300 aa, and two envelope proteins, E1 (481 aa) and E2 (282 aa). Both the E1 and E2 proteins are preceded by a stretch of 21 hydrophobic aa, characteristic of a signal peptide, and each has three putative glycosylation sites in the polypeptide chains. Comparison between the structural proteins of the vaccine and the wild-type (wt; M33) strains of rubella virus, revealed that the E2 protein of the vaccine strain differs, in its apparent Mr, by approx. 3 kDa, from the wt strain. The difference could be due to decreased glycosylation of the vaccine strain E2 protein, as revealed by [3H]mannose incorporation studies. Five single-aa changes in the structural proteins occurred during the attenuation process, one each in the capsid and the E1 protein and three in the E2 protein. The change of Thr-412----Ile in the E2 protein results in the loss of a putative glycosylation site at Asn-410, which offers a plausible explanation for decreased glycosylation of the E2 protein from the vaccine strain of rubella virus.  相似文献   

17.
The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.  相似文献   

18.
19.
Tie JK  Zheng MY  Pope RM  Straight DL  Stafford DW 《Biochemistry》2006,45(49):14755-14763
The vitamin K-dependent carboxylase is an integral membrane protein which is required for the post-translational modification of a variety of vitamin K-dependent proteins. Previous studies have suggested carboxylase is a glycoprotein with N-linked glycosylation sites. In this study, we identify the N-glycosylation sites of carboxylase by mass spectrometric peptide mapping analyses combined with site-directed mutagenesis. Our mass spectrometric results show that the N-linked glycosylation in carboxylase occurs at positions N459, N550, N605, and N627. Eliminating these glycosylation sites by changing asparagine to glutamine caused the mutant carboxylase to migrate faster on SDS-PAGE gels, adding further evidence that these sites are glycosylated. In addition, the mutation studies identified N525, a site that cannot be recovered by mass spectroscopy analysis, as a glycosylation site. Furthermore, the potential glycosylation site at N570 is glycosylated only if all five natural glycosylation sites are simultaneously mutated. Removal of the oligosaccharides by glycosidase from wild-type carboxylase or by elimination of the functional glycosylation sites by site-directed mutagenesis did not affect either the carboxylation or epoxidation activity when the small FLEEL pentapeptide was used as a substrate, suggesting that N-linked glycosylation is not required for the enzymatic function of carboxylase. In contrast, when site N570 and the five natural glycosylation sites were mutated simultaneously, the resulting carboxylase protein was degraded. Our results suggest that N-linked glycosylation is not essential for carboxylase enzymatic activity but is important for protein folding and stability.  相似文献   

20.
Cell lines established from the lepidopteran insect Spodoptera frugiperda (fall armyworm; Sf9) are used routinely as hosts for the expression of foreign proteins by recombinant baculovirus vectors. We have examined the pathway of protein glycosylation and secretion in these cells, using human tissue plasminogen activator (t-PA) as a model. t-PA expressed in Sf9 cells was both N glycosylated and secreted. At least a subset of the N-linked oligosaccharides in extracellular t-PA was resistant to endo-beta-N-acetyl-D-glucosaminidase H, which removes immature, high-mannose-type oligosaccharides. This refutes the general conclusion from previous studies that Sf9 cells cannot process immature N-linked oligosaccharides to an endo-beta-N-acetyl-D-glucosaminidase H-resistant form. A nonglycosylated t-PA precursor was not detected in Sf9 cells, even with very short pulse-labeling times. This suggests that the mammalian signal sequence of t-PA is efficiently recognized in Sf9 cells and that it can mediate rapid translocation across the membrane of the rough endoplasmic reticulum, where cotranslational N glycosylation takes place. However, t-PA was secreted rather slowly, with a half-time of about 1.6 h. Thus, a rate-limiting step(s) in secretion occurs subsequent to translocation and N glycosylation of the t-PA polypeptide. Treatment of Sf9 cells with tunicamycin, but not with inhibitors of oligosaccharide processing, prevented the appearance of t-PA in the extracellular medium. This suggests that N glycosylation per se, but not processing of the N-linked oligosaccharides, is required directly or indirectly in baculovirus-infected Sf9 cells for the secretion of t-PA. Finally, the relative efficiency of secretion decreased dramatically with time of infection, suggesting that the Sf9 host cell secretory pathway is compromised during the later stages of baculovirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号