首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物混合培养及其应用   总被引:25,自引:1,他引:24  
简述了混合培养微生物资源及其应用的研究进展。在长期的实验和生产实践中,人们发现很多生物过程是微生物纯培养不能完成或只能微弱进行的,必须依靠两种或两种以上的微生物共同培养完成。对于很多工业污染物、生物农药、纤维素、几丁质的生物降解,微生物混合培养是必要的;微生物混合培养可用于维生素C、维生素B12、组氨酸、缬氨酸、L-苹果酸等发酵生产,还可用于药物的甾体转化、沼气发酵、湿法冶金等。混合培养的微生物资源应受到人们更多的重视。  相似文献   

2.
微生物混合发酵的研究及应用   总被引:11,自引:0,他引:11  
李春笋  郭顺星   《微生物学通报》2004,31(3):156-161
由于不同微生物之间的正相互作用,人们发现应用两种或两种以上微生物混合发酵能更好地解决实践中的许多问题。在过去几年中,对微生物的混合发酵的应用以及其中微生物之间的相互作用机理的研究取得了明显进展,主要有以下4个方面:(1)对生物质的降解利用;(2)对环境污染物的降解;(3)生产特定的代谢产物;(4)混合发酵的工艺。综述了微生物混合发酵的应用及相关机理、涉及的微生物和影响因素。  相似文献   

3.
混合培养是指人工建立微生物区系,利用两种或两种以上的微生物不同特性,加以调节控制,以达到所需目的的技术。这种技术在几千年以前,虽没有被认识,但早已得到应用。在十八世纪末,Rober-koch(1943—1910年)建立纯培养体系之前,凡是利用微生物的过程都是混合培养。纯种培养是指在特定环境中,仅存在一种微生物的生长。现在基础理论的研究,微生物技术的应用、工业发酵及优良菌株的选育等都是建立在纯培养的基础之上。纯培养奠定了  相似文献   

4.
混合菌发酵转化纤维素生产单细胞蛋白   总被引:5,自引:0,他引:5  
纤维素是自然界中存在的最丰富的天然资源 ,合理开发和利用纤维素是科学家们一直致力于研究的重点领域。尽管几十年来人们在纤维素及纤维素酶的理论研究和实践应用方面均取得了较大进步 ,迄今尚无一种微生物或一套酶系按传统方法用于大规模降解纤维素 ,并取得显著经济效益[1 3] 。利用微生物混合发酵 ,可使纤维素转化为单细胞蛋白。该方面研究不仅可以解决蛋白资源短缺 ,解决动物饲料需求上的短缺 ,而且还可以提高和改善饲料中的蛋白含量和营养价值。本文就混合菌发酵转化纤维素合成单细胞蛋白的应用研究进行概述。1 液态混合菌体系发酵纤…  相似文献   

5.
混合菌发酵转化纤维素生产单细胞蛋白   总被引:5,自引:0,他引:5  
纤维素是自然界中存在的最丰富的天然资源,合理开发和利用纤维素是科学家们一直致力于研究的重点领域.尽管几十年来人们在纤维素及纤维素酶的理论研究和实践应用方面均取得了较大进步,迄今尚无一种微生物或一套酶系按传统方法用于大规模降解纤维素,并取得显著经济效益[1-3].利用微生物混合发酵,可使纤维素转化为单细胞蛋白.该方面研究不仅可以解决蛋白资源短缺,解决动物饲料需求上的短缺,而且还可以提高和改善饲料中的蛋白含量和营养价值.本文就混合菌发酵转化纤维素合成单细胞蛋白的应用研究进行概述. 1 液态混合菌体系发酵纤维素合成单细胞蛋白  相似文献   

6.
维生素C生物发酵   总被引:2,自引:0,他引:2  
维生素C(VitanunC,Vc)是人体营养必需的维生素,其不仅作为重要的医药产品用于治疗多种疾病,也广泛用于食品、饲料及化妆品中。随着维生素C应用范围的增加,市场需求量日益增大,使人们对V。生产技术不断地进行研究、改进。维生素C的生产可分为浓缩提取、化学合成和生物发酵3个阶段。二三十年代人们从柠檬、胡批、野蔷级辣椒等生物组织中提取浓缩获得维牛素C的方法成本高,产量有限,远远不能满足人们日益增长的需求。1933年,ReiChstein等【‘」建立了从D一葡萄糖出发,以化学方法和一步发酵方法合成维生素C的“莱氏法”。该法经…  相似文献   

7.
有效微生物群EM的应用及研究现状   总被引:8,自引:1,他引:7  
有效微生物群(EffectiveMicroorgsnisms,简称EM)是日本琉球大学比嘉照夫教授研究成功的一种新型复合微生物活菌制剂,由光合细菌、酵母菌、乳酸菌、放线菌及发酵型丝状真菌等5科10属80多种微生物复合培养而成。其特点是采用独特的发酵工艺把好气性微生物和嫌气性微生物按一定比例加以混合,培养有效微生物群体。它们互相组合在一起,形成一个复杂的微生物生态系统。这个系统犹如一个微生物加工厂,各样微生物在其生长过程中产生出的有用物质及其分泌物质,成为各自或相互生长的基质或原料,从而形成相互间的共生增殖关系,相互作用,发…  相似文献   

8.
廉价生物质资源的利用是工业生物技术领域研究的热点,复杂的成分和较多的杂质使传统的单菌发酵方式难以应对,成为产业化的关键问题。文中从微生物菌群的工业应用、微生物菌群发酵与纯种发酵的比较、微生物细胞间的相互作用等方面综述了微生物菌群发酵技术的最新研究进展,并对微生物菌群的设计和应用进行了展望。微生物菌群发酵可以充分利用廉价生物质基质、生产多个产品或减少副产物的生成,在生物基化学品和燃料的生产中将是一种有前景的发酵技术。  相似文献   

9.
微生物资源是国家战略性生物资源,是支撑微生物学科发展与技术创新的重要基础。可直接开发为食品原料或用以酿造生产,也可作为服务农牧业生产菌剂产品或用于生产医疗药品和清洁能源,已经在工业、农业、食品、酿造、医药、能源及环境等领域得到广泛应用。近年来,随着生物技术及分子生物学等研究的发展,在微生物资源的分离、评价、保藏等方面都取得了较大进展。《微生物学通报》组织了本期“微生物资源:发掘、利用、展望与挑战”专栏,旨在展示微生物资源学领域的最新进展,加强微生物种质资源的发掘、利用,助力微生物资源学科和科技创新战略发展。  相似文献   

10.
<正>生物产氢具有清洁、节能和不消耗矿物资源等优点,其中发酵产氢具有较大的应用潜力。近几年,多种木质纤维素材料被用于生物产氢的研究,能够进行纤维素降解和发酵产氢的厌氧菌也越来越受到关注。研究表明,采用高温厌氧菌联合培养或混合菌群培养,可直接利用纤维素产氢,有利于降低发酵产氢的成本。将纤维素发酵产氢与光合产氢或甲烷生成联合应用,才能使生物产氢  相似文献   

11.
<正> 前言左旋多巴(L-dopa)是一种在医药卫生,保健美容等诸多方面有着显著功效的氨基酸,它的生产很早就引起了人们的重视,人们通过化学合成和生物合成两条途径来获得 L-DOPA,二者相比,后者更加简单、方便。国内有人从植物中提取L-DOPA,但由于受到原料来源限制,产量小。与从植物中提取多巴相比,利用微生物来发酵生产 L-DOPA 有着生产周期短、易培养、占地面积小等诸多优点,利用微生物生产多巴是一种经济且有前途的方法。  相似文献   

12.
微生物发酵生产多糖的研究进展   总被引:1,自引:0,他引:1  
微生物是一种能生产多糖的可再生资源,微生物多糖因独特的生理活性和广阔的应用前景而备受人们的关注.本文阐述了微生物多糖的产生菌和发酵培养条件等方面的研究进展,以期对微生物多糖的深入研究和广泛应用有一定的指导意义.  相似文献   

13.
随着能源紧缺的日益加剧,以及化石燃料燃烧引起的环境问题逐渐突显,氢能作为一种清洁可再生能源越来越受到青睐。生物制氢与热化学及电化学制氢相比其反应条件温和、低耗、绿色,是一项非常有应用前景的技术。生物制氢从广义上可以分为暗发酵和光发酵产氢两种,其中暗发酵微生物可以利用有机废弃物产生氢气以及有机酸等副产物,光合细菌在光照和固氮酶的作用下可以将暗发酵产生的有机酸继续用于产氢,因此两种发酵产氢方式相结合可以提高有机废物的资源化效率。将近年来暗发酵-光发酵两阶段生物制氢技术进行整理分析,从其产氢机理、主要影响因素、暗发酵-光发酵产氢结合方式(两步法、混合培养产氢)几个方面进行阐述,最后指出该技术面临的挑战。  相似文献   

14.
名词解释     
微生物培养法在人为条件下繁殖微生物的方法。根据各种微生物对养料、温度、空气、水份、酸碱度等条件的不同要求,以及生产和科学实验上的要求,可分别设计不同的培养方法,如通气培养(摇瓶培养、发酵罐通气培养等)、厌气培养(密闭式发酵培养等)、连续培养等。对于病毒则常用动植物活机体或离体的活组织进行培养。  相似文献   

15.
信息库     
1 两种新型胞外胆固醇氧化酶许多工业微生物产生胆固醇氧化酶。胆固醇氧化酶可用于测定食品和血液中的胆固醇含量 ,还用于生产甾类激素化学合成的前体 ,和降解食品中的胆固醇。许多微生物产生的胆固醇氧化酶已经提纯 ,这些微生物包括节杆菌 ,短杆菌 ,棒杆菌 ,诺卡氏菌 ,假单胞菌 ,红球菌 ,裂褶菌 ,和链霉菌等。本研究从韩国传统的发酵比目鱼上分离到一株高产胞外胆固醇氧化酶的芽孢杆菌 (Bacillussp .)SFF34。芽孢杆菌SFF34培养在含胆固醇的培养基上。从培养上清液中分离到两种新型胞外胆固醇氧化酶 ,CO1和CO2 ,纯酶的分子量分别为 36…  相似文献   

16.
近年来,固定化微生物细胞用于单一酶反应的工业化生产,在发酵工程方面越来越引起人们的兴趣。特别是固定化微生物细胞,用于多步生化反应中合成产品以及在发酵工业中,必将有广泛的前途。这个新技术的应用范围也越来越广。我们以乙醇、乳酸、柠檬酸和葡萄糖酸的生产为例子,来阐明厌气和好气性微生物细胞固定化后的发酵过程。  相似文献   

17.
利用秸秆类物质进行微生物共发酵生产单细胞蛋白   总被引:17,自引:2,他引:15  
本实验采用固液混合共发酵方式,对绿色木霉和饲料酵母在纤维素材料上共生发酵,生产单细胞蛋白质的条件进行了研究。研究发现,在木霉接种96h后再接种酵母,混合培养后,培养物中蛋白质含量提高到20-25%,并可获得30%的单细胞蛋白,产物中蛋白质含量在53%以上,且富含多种酶类、氨基酸及维生素等,从而提高了纤维素原料的营养价值,该法使纤维素转化率达51%。  相似文献   

18.
自然环境中99%微生物在实验室条件下仍是不能被培养的,称之为"未培养"微生物或微生物"暗物质"。对其进行研究不仅有助于认识环境中微生物代谢多样性,丰富生命之树,同时未培养微生物还蕴含着巨大的新基因和新天然产物资源。但传统培养技术的局限性阻碍了"未培养"微生物资源的开发和利用。虽然随着分子生物学技术的发展,可以直接从环境中获得未培养微生物的遗传信息,分析微生物的广泛代谢多样性,但微生物的生理特征和代谢产物等分析仍然需要建立在研究纯菌株的基础上。目前,已经有很多新颖的培养技术被研发,如原位培养技术、共培养技术和连续流生物反应器培养技术等用于挖掘未培养微生物资源。本文主要介绍了连续流生物反应器培养新技术的发展与改进,探讨了"未培养"微生物培养技术及设备的发展方向,以进一步促进"未培养"微生物资源的开发与利用。  相似文献   

19.
实现从木质纤维素原料到燃料和高附加值化学品的生物转化,预处理是一个非常重要的步骤.酸解或蒸汽爆破等热-化学预处理过程会在水解液中生成或释放有机酸类、糠醛类和酚类化合物等抑制因子.这些抑制因子对发酵微生物具有毒性,会显著降低发酵产品的产率和生产强度.生物法去除木质纤维素水解液中的抑制因子具有操作简便以及不产生废水、废物等优点.生物脱毒法可分为两类:一类是通过向木质纤维素水解液中添加微生物或酶制剂,在发酵前去除抑制因子;另一类方法是通过遗传改造或适应性进化提高发酵菌株对抑制因子的生物降解能力,从而提高木质纤维素水解液的发酵性能.将着重以乙醇生产为例,介绍如何通过生物脱毒的方法提高木质纤维素水解液发酵的得率和生产强度.  相似文献   

20.
生物发酵是以微生物菌种为生物催化剂,以淀粉糖、生物质等可再生资源为原料发酵生产各种食品、化学品、燃料、材料等物质的生产过程,具有绿色、低碳和可持续等特征。我国拥有全球规模最大的生物发酵产业,尤其氨基酸、维生素等传统发酵产品占全球市场份额的60%–80%。发展生物发酵产业对于我国实现“碳中和、碳达峰”的战略目标和生物经济发展具有重要的意义。微生物工业菌种是生物发酵产业的核心,直接影响原料路线、产品种类和生产成本。创新发酵工业菌种,提升其原料转化利用效率,提高产物生产水平,拓展产品种类,是生物发酵产业高质量发展的关键。近年来,合成生物学、系统生物学等学科的发展,进一步加深了研究者对微生物底盘细胞生理代谢机制的理解,加速了基因编辑等菌种设计创制使能技术的发展,为发酵工业菌种改造提升提供了新动能。本文选取了具有代表性的大宗氨基酸、B族维生素、柠檬酸、燃料乙醇等发酵产业,从其工业微生物底盘的基础研究和技术开发角度,综述发酵工业菌种改造提升的最新进展,并展望人工智能、自动化与生命科学交叉融合将对工业菌种迭代产生的重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号