首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
植食性昆虫的学习行为   总被引:15,自引:2,他引:13  
李月红  刘树生 《昆虫学报》2004,47(1):106-116
学习是指因经历不同而导致的行为变化。在植食性昆虫中,学习主要包含习惯性反应、厌恶性学习、联系性学习、敏感性反应和嗜好性诱导等类型。昆虫在幼虫和成虫期都具有学习能力,但幼虫期食料和取食经历不会对成虫行为产生直接影响。昆虫学习行为的表现受其本身食性、寄主刺激物的类别及寄主植物时空分布动态等因子的影响。学习能力有助于植食性昆虫应对复杂多变的植物环境,提高对寄主植物的利用效率,有利于其生存繁衍。对害虫学习行为的了解可为栖境调控、行为调控等害虫治理方法提供重要  相似文献   

2.
产卵是植物性昆虫生命周期中的一个重要环节,它能反映昆虫与植物相互作用的某些特点以及植食性昆虫对植物利用的策略.植物中的驱避物质在调节昆虫产卵行为过程中起着十分重要的作用.大量研究结果表明:许多非嗜食植物含有对昆虫产卵有驱避作用的次生化合物.研究植物中的昆虫产卵驱避物质不仅能在理论上加深对植食性昆虫产卵机制,植食性昆虫与植物间的相互关系以及昆虫群落构建机制等的认识,同时在害虫综合治理中有广泛的应用前景.  相似文献   

3.
蔬菜作物释放的虫害诱导植物挥发物(Herbivore-induced plant volatiles,HIPVs)是蔬菜作物受害虫胁迫后产生的一类启动防御反应的化合物,可以作为蔬菜作物的对外重要信息交流媒介和防御措施实施前体.蔬菜作物通过释放HIPVs来增强自身防御反应、调节昆虫行为和向邻近作物发出"预警信号",从而直接或间接地抵御植食性昆虫危害.近年来,有关HIPVs的研究已成为昆虫行为学与化学生态学的关注热点.本文系统综述了虫害诱导蔬菜作物挥发物类别、释放特性、生态功能及应用等方面,以期梳理和阐释HIPVs在蔬菜-害虫二级营养结构以及蔬菜-害虫-害虫天敌三级营养结构的化学生态网络中的重要化学信号功能,并对未来该方向的研究进行展望.  相似文献   

4.
虫害诱导植物挥发物(HIPVs)对植食性昆虫的行为调控   总被引:3,自引:2,他引:1  
孙晓玲  高宇  陈宗懋 《昆虫知识》2012,49(6):1413-1422
虫害诱导植物挥发物(herbivore induced plant volatiles,HIPVs)具有植物种类、品种、生育期和部位的特异性,也具有植食性昆虫种类、虫龄、为害程度、为害方式和其他一些环境因子的特异性。由于其释放量明显大于健康植株,因此更易被天敌、害虫以及邻近的植物等所利用,从而调节植物、植食性昆虫与天敌三者之间的相互作用关系,增强植物在自然界的生存竞争能力。本文对HIPVs在植食性昆虫寄主定位行为中的作用、HIPVs对植食性昆虫的种群调控功能及其应用现状2个方面加以综述,并在展望中对目前研究中存在的一些问题进行了探讨。  相似文献   

5.
昆虫进入性成熟期后 ,能够通过产生并且释放性外激素来引诱同种异性个体前来交尾。大多数昆虫的性外激素是由雌虫产生的 ,如常见的二化螟、棉红铃虫、梨小食心虫、舞毒蛾和马尾松毛虫等农业害虫 ,都是由雌虫产生并且释放性外激素来引诱雄虫的。虽然雌虫产生的性外激素的数量很少 ,但是对雄虫却有着强烈的引诱作用。据估计 ,1只雌虫 1次产生的性外激素的数量大约是 0 .0 0 5μg~ 1μg,但是它却能把远至数百米甚至上千米以外的雄虫引诱过来交尾。也有少数种类的昆虫 ,是由雄虫产生并且释放性外激素来引诱雌虫的 ,例如蝶类、地中海果蝇和锥蝇…  相似文献   

6.
<正> 昆虫不育雄虫释放技术是害虫防治中的一门新兴技术。该技术在蚊虫的防治中已有较多的研究。在大规模释放计划中,要将雄蛹从大量蛹群中检出,以便对雄蛹或雌性成蚊作必要的不育处理。不言而喻,雌蛹或雌蚊在蚊群中  相似文献   

7.
排便是昆虫的一个重要生理过程,排便行为不仅可以清除食物残渣,而且可以释放某些化学信息,进而影响昆虫同种或异种之间的相互作用.昆虫粪便中的信息化学物质不仅影响同种昆虫的聚集、求偶行为,而且可以影响同种和异种昆虫的产卵行为.此外,虫粪还能为其天敌昆虫的寄主定位和识别提供信息,并能通过诱导植物的防御反应抑制植食性昆虫的取食行为.本文根据国内外的相关研究,对虫粪中存在的信息化学物质进行了分类总结,并介绍了虫粪信息化合物在害虫防治中的应用,还讨论了目前存在的问题和研究前景.  相似文献   

8.
植食性昆虫的寄主选择机理及行为调控策略   总被引:25,自引:1,他引:24  
陆宴辉  张永军  吴孔明 《生态学报》2008,28(10):5113-5122
害虫是影响农作物生产的重要因素,过度使用化学农药已带来严重的“3R”问题。为了长期有效地控制害虫的危害,基于植食性昆虫寄主选择机制的行为调控策略已成为害虫治理研究的重要方向。天然植物资源(如驱避植物、诱集植物与诱集枝把)、物理模拟材料(如诱集色、驱避色与诱集模型)和人工合成物质(如引诱剂、驱避剂、刺激剂与抑制剂)等研发工作皆取得了突破性的进展。除单一措施的使用外,多种诱集措施协同利用的“诱集+诱集”策略、诱集措施与趋避措施结合使用的“排斥-诱集”策略也已被广泛应用。  相似文献   

9.
植食性昆虫成虫对非寄主植物源驱避素的经历,可导致其对这类化合物产生习惯性反应或诱导嗜好性.让小菜蛾雌蛾对源于印楝的驱避剂——“保卫德”(BIOACT-TTM EC508)经历2~6次或2~6日后,测定它们对经过保卫德处理的白菜植株的产卵选择行为.结果表明,保卫德对2日龄、4日龄、6日龄无经历雌蛾均有很强的驱避作用,它们在经过保卫德处理的白菜植株上的相对产卵率均只有10%左右;对保卫德有2次或2 d经历的2日龄雌蛾,该产卵率平均上升到17%;对保卫德有4次或4 d经历的4日龄雌蛾,该产卵率上升到21%~24%;对保卫德有6次或6 d经历的6日龄雌蛾,该产卵率上升到29%.表明经历可导致雌蛾对保卫德产生习惯性反应或诱导嗜好性,使保卫德的驱避作用下降,但这种经历导致的产卵选择行为变化在个体之间存在较大差异.  相似文献   

10.
在过去的几十年中,昆虫不育技术(sterile insect technique, SIT)已被用于防治农业害虫和人类健康相关的病媒害虫。相较于传统的农药控制策略,昆虫不育技术具有物种特异性和环境友好型等特点。通过释放不育雄虫的昆虫不育技术的主要障碍是在大规模饲养阶段将雄性与雌性分离,从而提高这些防治方法的成本效率,并防止释放携带和传播疾病的雌性群体。目前大多数针对双翅目害虫的遗传防治策略没有进行性别分离,少数害虫性别分离方法是基于蛹的大小或者雌雄蛹羽化时间差异进行人工识别和机械识别分离。双翅目昆虫性别决定及分化分子机制多种多样,其性别决定主要信号差异巨大,其多种性别决定基因已用于性别分离系统的开发。性比失衡性别分离策略通过破坏性别决定途径关键基因的表达获得雄性偏向后代,雌性条件性致死分离策略利用性别决定关键基因的雌雄选择性剪接差异实现性别分离,这两种性别分离策略目前正在害虫不育防治中接受大规模饲养应用评估,而基于双翅目昆虫雌雄性二态和基因标记发展的可视化性别分离策略也已成功实现多种害虫的性别分离。我们对性比失衡分离策略、雌性条件性致死分离策略和可视化性别分离策略在双翅目害虫中的研究进展进行了综述,重点评估了这些方法在雄虫大规模饲养和释放的应用潜力,以期在更完善的性别分离技术支持下为害虫防治研究取得更多突破性进展。  相似文献   

11.
Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae) is a major soybean (Glycine max (L.) Merrill) pest and reduces grain quality and yield worldwide. In the context of integrated pest management strategies, plant resistance stands out as an extremely valuable tool for the management of pest populations. Here, we evaluated the resistance of several soybean entries to P. guildinii using tests of attractiveness and feeding preference. We also evaluated trichome number and length as well as pod hardness to evaluate the relationships between these parameters and the resistance to stink bug. D 75-10169, PI 171451, PI 229358, PI 227687, “IAC 100,” IAC 78-2318, PI 274454, PI 274453 and “IAC 19” were less attractive and less consumed by stink bugs. D 75-10169, PI 227687 and PI 274454 received low probe numbers and a short consumption duration per probe; “IAC 100” and PI 274453 received low probe numbers; PI 171451 and PI 229358 received short probe durations; and “IAC 19” received the highest number of probes. There was no correlation between trichome density and length with the attractiveness and feeding preference of the adult insects; however, pod hardness results suggested that this morphological factor may influence the number of probes performed by the insect. PI’s entries, D 75-10169, “IAC 100” and “IAC 19” expressed antixenosis resistance and should be appropriate for use in soybean breeding programs aimed at developing entries with higher resistance to pest insects.  相似文献   

12.
Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.  相似文献   

13.
Abstract.  The relative roles of olfaction and vision in the crepuscular host-finding process of a major lepidopteran pest of cruciferous crops, the diamondback moth Plutella xylostella are investigated in a series of laboratory and semi‐field experiments. Flying female moths use volatile plant chemical cues to locate and to promote landing on their host, even in complex mixed-crop environments in large cages. Multiple regression analysis shows that both the plant position (front, middle or back rows) and the type of plant (host plant, nonhost plant) are needed to explain the distribution of insects in such a mixed-crop situation. This strong plant position effect indicates that, when host plants are present in a mixture, foraging P. xylostella are more likely to alight on the first row of the plants. The findings are discussed with regard to current theories of host-plant location by phytophagous insects and the possible implications for integrated pest management.  相似文献   

14.
1. Much is known about how enriched environmental diversity affects ability to learn across the months and years that are the developmental periods of large animals. 2. Less is known about how diversity impacts learning across the minutes and hours during which sensory environments of small foraging animals such as insects may vary dramatically. 3. This study shows that Drosophila melanogaster exposed to a diversity of odour–taste associations over a few minutes subsequently learn standard associative learning tasks poorly. 4. This effect is robust to variation in odours used in all parts of experiments. 5. Findings may have an impact on at least three major research areas in ecology: the relationship between biodiversity and ecosystem functioning; the evolution of floral constancy in pollinators; and the pest‐protective effects of mixed species crops.  相似文献   

15.
16.
Plant lectins as defense proteins against phytophagous insects   总被引:2,自引:0,他引:2  
One of the most important direct defense responses in plants against the attack by phytophagous insects is the production of insecticidal peptides or proteins. One particular class of entomotoxic proteins present in many plant species is the group of carbohydrate-binding proteins or lectins. During the last decade a lot of progress was made in the study of a few lectins that are expressed in response to herbivory by phytophagous insects and the insecticidal properties of plant lectins in general. This review gives an overview of lectins with high potential for the use in pest control strategies based on their activity towards pest insects. In addition, potential target sites for lectins inside the insect and the mode of action are discussed. In addition, the effect of plant lectins on non-target organisms such as beneficial insects as well as on human/animal consumers is discussed. It can be concluded that some insecticidal lectins are useful tools that can contribute to the development of integrated pest management strategies with minimal effect(s) on non-target organisms.  相似文献   

17.
Foraging adults of phytophagous insects are attracted by host‐plant volatiles and supposedly repelled by volatiles from non‐host plants. In behavioural control of pest insects, chemicals derived from non‐host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non‐host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non‐host‐plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non‐host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non‐host‐plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host‐plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.  相似文献   

18.
Transgenic resistance to insects has been demonstrated in plants expressing insecticidal genes such as δ -endotoxins from Bacillus thuringiensis (Bt), protease inhibitors, enzymes, secondary plant metabolites, and plant lectins. While transgenic plants with introduced Bt genes have been deployed in several crops on a global scale, the alternative genes have received considerably less attention. The protease inhibitor and lectin genes largely affect insect growth and development and, in most instances, do not result in insect mortality. The effective concentrations of these proteins are much greater than the Bt toxin proteins. Therefore, the potential of some of the alternative genes can only be realized by deploying them in combination with conventional host plant resistance and Bt genes. Genes conferring resistance to insects can also be deployed as multilines or synthetic varieties. Initial indications from deployment of transgenics with insect resistance in diverse cropping systems in USA, Canada, Argentina, China, India, Australia, and South Africa suggest that single transgene products in standard cultivar backgrounds are not a recipe for sustainable pest management. Instead, a much more complex approach may be needed, one which may involve deployment of a combination of different transgenes in different backgrounds. Under diverse climatic conditions and cropping systems of tropics, the success in the utilization of transgenics for pest management may involve decentralized national breeding programs and several small-scale seed companies. While several transgenic crops with insecticidal genes have been introduced in the temperate regions, very little has been done to use this technology for improving crop productivity in the harsh environments of the tropics, where the need for increasing food production is most urgent. There is a need to develop appropriate strategies for deployment of transgenics for pest management, keeping in view the pest spectrum involved, and the effects on nontarget organisms in the ecosystem.  相似文献   

19.
植食性昆虫对植物的反防御机制   总被引:9,自引:0,他引:9  
本文综述了植食性昆虫对植物的反防御机制.一方面,植食性昆虫可通过其快速进化的寄主选择适应性,改变取食策略,调节生长发育的节律,以及规避自然天敌等抑制、逃避或改变植物的防御,即行为防御机制;另一方面,植食性昆虫可适应植物蛋白酶抑制剂、逃避植物防御伤信号、解毒植物次生物质,以及抑制植物阻塞反应来对植物防御进行反防御,即生理和生化防御机制.其中,昆虫抑制植物伤信号,防止植物阻塞反应是反防御机制的研究热点.昆虫反防御的研究有助于提高对昆虫-植物间协同进化关系的认识,并为害虫治理和抗虫植物的培育提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号