首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
【背景】对来源于嗜热枯草芽孢杆菌(TBS2)的一种新型重组耐高温β-甘露聚糖酶(ReTMan26)基因序列进行分析,该基因中含有3个N-糖基化位点(N8、N26与N255),经毕赤酵母表达时可进行N-糖基化修饰。【目的】确定N-糖基化对ReTMan26稳定性的影响。【方法】通过构建ReTMan26蛋白质三维结构模型,初步分析N-糖基化对该酶稳定性的影响。在此基础上,利用天然蛋白去糖基化试剂盒除去ReTMan26的N-多糖链,获得去除N-糖基化的耐高温β-甘露聚糖酶(ReTMan26-DG),并对纯化后的ReTMan26及ReTMan26-DG进行相应的稳定性对比检测。【结果】ReTMan26与ReTMan26-DG的最适反应pH均为6.0,但在pH1.5-9.0范围内,ReTMan26的稳定性比ReTMan26-DG有小幅提高。ReTMan26的最适反应温度为60°C,比ReTMan26-DG高5°C;ReTMan26经100°C处理10 min,剩余酶活为58.6%,而ReTMan26-DG经93°C处理10 min,剩余酶活为58.2%,100°C处理10min则完全失活。经胃蛋白酶及胰蛋白酶在37°C处理2h后,ReTMan26的剩余酶活分别为70.5%及91.2%,比ReTMan26-DG分别提高了23.7%及25.6%。【结论】N-糖基化可提高ReTMan26的pH稳定性、耐热稳定性及抗蛋白酶消化性能。  相似文献   

2.
【目的】酵母表达外源糖蛋白时会对蛋白进行过度N-糖基化修饰,产生高甘露糖型糖链,影响蛋白的活性,其中α-1,6-甘露糖转移酶(och1p)在这一过程中起着关键作用。通过敲除毕赤酵母X-33的α-1,6甘露糖转移酶(och1p)基因,获得一个对糖蛋白进行低糖基化修饰的毕赤酵母表达系统。【方法】采用双交换同源重组敲除目的基因的方法,首先敲除毕赤酵母X-33的URA3基因,获得一个尿嘧啶营养缺陷型的X-33(ura3-)菌株;然后用URA3基因作为选择标记,敲除X-33(ura3-)的α-1,6甘露糖转移酶(och1p)基因,获得OCH1基因敲除的X-33(och1-)菌株。用X-33(och1-)菌表达糖蛋白GM-CSF,分析GM-CSF蛋白糖链的变化。【结果】首次成功敲除了X-33的URA3和OCH1基因,与野生型相比,X-33(och1-)菌表达的GM-CSF蛋白过度糖基化修饰程度明显降低。【结论】X-33(och1-)菌株的构建提供了一个对蛋白低N-糖基化修饰的毕赤酵母表达系统,也为进一步的糖基化改造提供了良好的基础。  相似文献   

3.
摘要: 【目的】酵母表达外源糖蛋白时会对蛋白进行过度N-糖基化修饰,产生高甘露糖型糖链,影响蛋白的活性,其中α-1,6-甘露糖转移酶(och1p)在这一过程中起着关键作用。通过敲除毕赤酵母X-33的α-1,6甘露糖转移酶(och1p)基因,获得一个对糖蛋白进行低糖基化修饰的毕赤酵母表达系统。【方法】采用双交换同源重组敲除目的基因的方法,首先敲除赤酵母X-33的URA3基因,获得一个尿嘧啶营养缺陷型的X-33(ura3-)菌株;然后用URA3基因作为选择标记,敲除X-33(ura3-)的α-1,6甘露糖转移酶(och1p)基因,获得OCH1基因敲除的X-33(och1-)菌株。用X-33 (och1-)菌表达糖蛋白GM-CSF,分析GM-CSF蛋白糖链的变化。【结果】首次成功敲除了X-33的URA3和OCH1基因,与野生型相比,X-33(och1-)菌表达的GM-CSF蛋白过度糖基化修饰程度明显降低。【结论】X-33(och1-)菌株的构建提供了一个对蛋白低N-糖基化修饰的毕赤酵母表达系统,也为进一步的糖基化改造提供了良好的基础。  相似文献   

4.
【目的】以实验室筛选获得的一株长梗木霉GM2(Trichoderma longibrachiatum)为材料,克隆出其β-葡萄糖苷酶(β-Glucosidase)基因bgl并在大肠杆菌和酵母中进行表达。【方法】利用同源克隆扩增出其β-葡萄糖苷酶基因bgl全长序列,分别亚克隆到质粒pET-32a(+)和pPICZα-B中,构建其原核表达载体pET32a(+)-bglI和真核表达载体pPICZα-B-bgl。【结果】bgl基因序列全长2 369 bp,含两个内含子,编码744个氨基酸。在大肠杆菌BL21(DE3)中表达bgl,重组蛋白以包涵体形式存在,上清液中没有β-葡萄糖苷酶的酶活。将载体pPICZα-B-bgl电转化入毕赤酵母GS115,得到78 kD左右重组蛋白,与预测大小相符。按9%接种量接入50 mL YP培养基(初始pH 5.5),30°C振荡培养96 h,添加终浓度1%的甲醇诱导后β-葡萄糖苷酶酶活达60 U/mL。重组酶bgl催化水杨苷水解反应的最适pH为5.0,最适温度为70°C;另外,此bgl在pH 3.0 10.0和40°C 60°C范围内具有比较好的稳定性。【结论】长梗木霉GM2的β-葡萄糖苷酶在P.pastoris中获得可溶性表达,并证明有一定的活性。  相似文献   

5.
汪颖  刘源涛  郑昀昀  彭惠 《微生物学通报》2013,40(12):2254-2258
【目的】检测具有生淀粉降解活性的新型α-淀粉酶AmyP是否具有淀粉结合结构域(SBD)。【方法】通过结构域预测和序列分析, 推测AmyP的C端是一个SBD。将这段序列克隆、表达和重组蛋白纯化后, 采用亲和电泳和生淀粉吸附两种方法对重组表达的蛋白进行研究。【结果】AmyP的C端序列是一个新型的SBD, 根据序列特征可以将其划分在碳水化合物结合结构域(CBM) 20家族。该SBD与生大米淀粉的吸附能力最强, 生玉米淀粉次之, 不能与生小麦淀粉、生马铃薯淀粉和生绿豆淀粉吸附。【结论】α-淀粉酶AmyP在蛋白C端具有一个SBD, 有助于理解AmyP快速偏好性降解生淀粉的能力。  相似文献   

6.
【目的】实现地衣芽孢杆菌麦芽糖淀粉酶在枯草芽孢杆菌中的高效异源表达,并研究该重组酶的酶学性质。【方法】克隆巨大芽孢杆菌木糖异构酶基因的启动子区域及其调控蛋白,构建一个大肠杆菌/芽孢杆菌穿梭型诱导表达质粒,使用该诱导型启动子介导麦芽糖淀粉酶编码基因,实现其在枯草芽孢杆菌中的功能表达。对重组枯草芽孢杆菌的诱导条件进行优化,提高麦芽糖淀粉酶的产量。【结果】获得了诱导表达麦芽糖淀粉酶基因的重组枯草芽孢杆菌菌株。最适诱导温度为45°C,最适诱导剂添加浓度为1%,最适添加诱导剂时间为接种培养9 h后。重组酶蛋白分子量大小为67 k D,对该酶的酶学性质研究发现,以可溶性淀粉为底物,反应生成麦芽糖和葡萄糖,其中麦芽糖含量为60.42%。重组酶最适作用温度为45°C,最适作用p H为6.5,Ca2+、Co2+、EDTA对该重组麦芽糖淀粉酶具有激活作用。【结论】通过木糖诱导表达系统可以实现麦芽糖淀粉酶在枯草芽孢杆菌中的高效诱导型表达,酶活最高可达296.64 U/m L发酵液,在工业上有着较好的应用前景。  相似文献   

7.
【目的】通过构建假交替单胞菌(Pseudoalteromonassp.DL-6)低温几丁质酶(chitinaseA,chi A;chitinase C,chi C)的重组乳酸克鲁维酵母菌株、纯化重组蛋白并对其进行酶学性质表征,为低温几丁质酶潜在工业化生产几丁寡糖奠定理论基础。【方法】人工合成密码子优化的几丁质酶基因,构建重组乳酸克鲁维酵母表达质粒(p KLAC1-chi A、p KLAC1-chi C)并用电脉冲法转化到乳酸克鲁维酵母中,实现低温几丁质酶的可溶表达。利用镍柱亲和层析纯化得到高纯度的重组几丁质酶。【结果】成功构建产低温几丁质酶的重组乳酸克鲁维酵母并纯化获得高纯度的重组几丁质酶。经SDS-PAGE分析在110 k Da与90 k Da附近出现符合预期大小的蛋白条带。铁氰化钾法测得Chi A和Chi C的酶活分别为51.45 U/mg与108.56 U/mg。最适反应温度分别为20°C和30°C,最适p H分别为8.0和9.0。在低于40°C,p H 8.0–12.0时,Chi A和Chi C重组酶较稳定。Chi A和Chi C对胶体几丁质以及粉状底物α-几丁质与β-几丁质具有明显的降解活性,且具有一定协同降解能力。【结论】首次实现假交替单胞菌来源的低温几丁质酶在乳酸克鲁维酵母中的重组表达、纯化、酶学性质及其降解产物分析,为其他低温几丁质酶的研究提供借鉴意义。  相似文献   

8.
【目的】以肠炎沙门菌肽脯氨酰顺反异构酶SlyD为对象,构建基因缺失株及表达纯化该蛋白,为研究其在肠炎沙门菌致病性与应激等方面的作用奠定基础。【方法】参考Gen Bank登录的肠炎沙门菌基因组序列设计用于slyD基因敲除及原核表达的特异引物,运用自杀质粒介导的同源重组技术对肠炎沙门菌C50041 slyD基因进行敲除,构建C50041ΔslyD缺失株;原核表达SlyD蛋白,通过α-糜蛋白酶耦联法对其PPIase活性进行测定;利用生物信息学相关软件,分析SlyD蛋白的氨基酸序列及功能域。【结果】PCR鉴定与测序结果证明成功构建了肠炎沙门菌C50041ΔslyD缺失株,其生长特性与野生株基本一致;SDS-PAGE及PPIase活性分析表明,获得了具有生物活性的可溶性SlyD蛋白;生物信息学分析显示SlyD蛋白由FKBP样肽脯氨酰顺反异构酶结构域、分子伴侣功能域和金属结合区域3个功能区域组成。【结论】成功获得了肠炎沙门菌C50041ΔslyD缺失株和具有PPIase活性的重组SlyD蛋白。  相似文献   

9.
【目的】研究N-糖基化对来源于嗜热蓝状菌β-葡萄糖苷酶(β-glucosidase,Bgl3A)的酶学性质影响。【方法】采用定点突变技术构建了3个去N-糖基化的突变体T44A、S228A、S299A,并分别在毕赤酵母GS115中表达纯化。【结果】与野生型Bgl3A相比,突变体S228A分泌蛋白产量极低,仅能微量检测到p NPG活性;突变体T44A和S299A的最适pH和最适温度没有改变,分别为4.0和75°C,但二者的T_m值和70°C下的热稳定性都明显优于野生型。以p NPG为底物时,突变体S299A和T44A的催化效率分别降低了14.5%和70.0%;以纤维二糖为底物时,T44A的催化效率基本不变,而S299A的催化效率提高了1.1倍。【结论】Bgl3A不同位点的N-糖基化修饰对酶的分泌和酶学性质的影响具有明显差异。其中,N226位的N-糖基化在维持酶的表达和功能方面至关重要,而去除N297位点的N-糖基化可以提高酶的热稳定性及对纤维二糖的催化效率。  相似文献   

10.
【目的】从分离自北极海底沉积物Pseudoalteromonas sp.K8菌株克隆、重组表达α-淀粉酶Amy3,并研究其酶学性质。【方法】基于Pseudoalteromonas haloplanktis TAC125基因组分析,从亲缘关系较近的Pseudoalteromonas sp.K8克隆获得α-淀粉酶基因amy3,以大肠杆菌为宿主进行重组表达,经Ni-NTA亲和层析柱纯化获得重组蛋白Amy3。以可溶性淀粉等为底物,研究Amy3的酶学性质。【结果】Amy3最适催化pH为8.5,在pH 6.5–10.0范围内酶活力维持在40%以上;其在pH 7.5–8.5范围的稳定性较好,pH 8.0条件下的半衰期可达4 h。Amy3在低温下较稳定,25℃半衰期为5 h;最适反应温度为25℃,并且在0℃可以保持50%以上酶活力,显示良好的低温催化特性。NaCl能够有效提升Amy3的酶活力及稳定性;荧光光谱分析表明,NaCl并未引起Amy3酶蛋白三级结构的改变。动力学分析显示,NaCl影响了酶催化的K_m及k_(cat),进而提升了酶的催化效率。底物特异性分析表明,Amy3对支链淀粉的水解能力优于直链淀粉,并能够有效地水解小麦淀粉、玉米淀粉和木薯淀粉。【结论】来源于Pseudoalteromonassp.K8菌株的α-淀粉酶Amy3具有良好的低温催化及嗜盐性,在洗涤、食品、污水处理等行业中有潜在的应用前景。  相似文献   

11.
【背景】深渊藤黄单胞菌XH031 (Luteimonas abyssi XH031)是从深海分离到的一株具有很强淀粉降解能力的细菌,前期实验显示其α-淀粉酶LamA在低温环境下仍能保持较高酶活力。若能够提升其热稳定性,会有更好的应用前景。【目的】分析钙离子的存在对LamA热稳定性的影响,并通过钙离子结合位点的关键氨基酸的定点突变,初步明确其作用机制。【方法】在不同的离子条件下检测LamA的热稳定性,利用生物信息学方法预测可能影响钙离子结合及耐热性的氨基酸位点,对目的氨基酸进行定点突变,表达和纯化突变蛋白,并进行功能鉴定。【结果】钙离子明显提高了LamA的热稳定性:在未添加钙离子时,于65°C处理30 min已完全失活;而在5 mmol/L钙离子条件下,于65°C处理30 min后仍具有36%的酶活力。对预测位点进行定点突变后,突变蛋白D200R和H233D/M234C完全失活;N120D、Q185E和T224D活性降低。在未添加钙离子时,突变蛋白稳定性受高温影响程度与野生型差别不大;而在钙离子条件下,N120D在65°C时的酶活力仅为野生型的27.8%,推测位点Asn120与钙离子的结合能够稳定低温酶LamA在较高温度下的结构。【结论】初步明确了钙离子可提升低温α-淀粉酶LamA的热稳定性,为今后相关酶类的工程改造提供理论基础。  相似文献   

12.
重构酿酒酵母N-糖基化途径生产人源化糖蛋白   总被引:2,自引:0,他引:2  
【目的】为了在酿酒酵母(Saccharomyces cerevisiae)中生产人源化的糖蛋白,必须对N-糖基化途径进行基因工程改造。作者通过敲除一些酵母N-糖基化途径中的特异性糖基转移酶,得到一株可以用于继续表达人类糖基转移酶的重组菌,并通过生长适应性进化技术回复其细胞生长能力。【方法】首先运用酵母遗传学和分子生物学技术敲除酿酒酵母的α-1,3-甘露糖基转移酶基因(ALG3)、α-1,6-甘露糖基转移酶基因(OCH1)和α-1,3-甘露糖基转移酶基因(MNN1)。采用蔗糖酶(invertase)活性染色实验初步检测N-糖链的变化,然后通过高效液相色谱和甘露糖苷酶酶切实验对其糖链结构进行鉴定。重组菌通过在高温条件下进行生长适应性进化,筛选出生长能力回复突变的菌株。【结果与结论】构建了Δalg3Δoch1Δmnn1菌株得到人类糖基化中间体Man5GlcNAc2,并对上述三缺陷型菌株进行适应性进化提高其细胞生长能力和环境适应能力。此外,作者还发现,该重组菌存在少量Man6GlcNAc2结构的糖链。经体外α-1,2-甘露糖苷酶切处理后,糖链Man5GlcNAc2和Man6GlcNAc2均转化为Man3GlcNAc2,表明形成Man3GlcNAc2之后的甘露糖之间均通过α-1,2-糖苷键连接。Δalg3Δoch1Δmnn1菌株的构建获得了生产人源化糖蛋白的酿酒酵母表达系统,为进一步糖基化改造和工业应用提供了良好的基础。  相似文献   

13.
巨大芽孢杆菌(Bacillus megaterium)AS1.127的淀粉酶基因的全碱基序列已被测定。结构基因由1982bp的单一开读框架组成。由DNA序列推测出的前体酶蛋白由659个氨基酸组成,N-端33个氨基酸为信号肽。成熟酶分子由626个氨基酸组成,分子量为68.676kD。该淀粉酶属糖化型α-淀粉酶。并与枯草杆菌(B.subtilis)168产生的糖化型α-淀粉酶之间有83.3%的同源性。分析发现两种菌产生的酶分子的N-端3/4的同源性为90.4%,而C-端1/4的同源性只有70%。序列排比结果说明在淀粉酶基因的趋异进化过程中,基因突变和遗传重组都曾起过作用。  相似文献   

14.
马骊  孙万仓 《植物学报》2017,52(5):568-578
为探明β-1,3-葡聚糖酶基因(β-1,3-glucanase)对油菜(Brassica campestris)抵御低温胁迫能力的作用,通过蛋白质谱分析得到β-1,3-葡聚糖酶蛋白,采用RT-PCR技术克隆白菜型冬油菜(B.rapa)陇油6号和天油4号β-1,3-葡聚糖酶的c DNA序列;并对该序列进行生物信息学分析;进而采用实时荧光定量PCR及半定量PCR检测β-1,3-葡聚糖酶基因在低温胁迫下的表达模式。结果获得长度为1 032 bp的陇油6号β-1,3-葡聚糖酶基因开放阅读框,编码343个氨基酸,相对分子量为38.102k Da,理论等电点为6.63,其与菜心(B.rapa subsp.chinensis)和甘蓝型油菜(B.napus)的蛋白质氨基酸序列同源性高达93.94%。该基因编码的酶是一个主要由α-螺旋组成的亲水性稳定蛋白,含有1个信号肽,存在2个跨膜结构域。该基因在进化上高度保守,其保守序列属于植物的糖基水解酶家族17特有的保守结构域。β-1,3-葡聚糖酶基因表达模式分析显示,4°C时该基因上调表达,继续低温(–4°C)胁迫处理,该基因上调表达至峰值,至–8°C时其表达下调。研究表明从白菜型冬油菜中克隆的β-1,3-glucanase在冬油菜品种陇油6号抗寒过程中发挥作用。  相似文献   

15.
【目的】探索荒漠昆虫小胸鳖甲Microdera punctipennis低温响应的分子机理并挖掘其耐寒基因。【方法】根据低温转录组数据筛选并克隆小胸鳖甲几丁质酶基因,并进行生物信息学分析;通过实时荧光定量PCR和免疫组织化学法分析该基因在成虫不同组织中和4℃低温胁迫下的表达模式分析。【结果】从小胸鳖甲成虫克隆获得一个几丁质酶基因Mpcht19(Gen Bank登录号:KY126382)。生物信息学分析表明,该基因编码的蛋白Mp CHT19属于Ⅳ型昆虫几丁质酶,理论分子量约为27.18 k D,无信号肽,具亲水性。系统进化分析表明,Mp CHT19与赤拟谷盗Tribolium castaneumⅣ型几丁质酶Tc CHT19同源性最高,氨基酸序列一致性为34.05%。实时荧光定量PCR结果显示,Mpcht19在成虫脂肪体和后肠中高表达,具有组织特异性;该基因的表达还受4℃低温诱导。免疫组织化学分析结果显示,在4℃低温下Mp CHT19蛋白在脂肪体和后肠中表达。【结论】Mpcht19基因的表达具有组织特异性,并受低温诱导。研究结果有助于深入研究几丁质酶与小胸鳖甲耐寒性的关系。  相似文献   

16.
王辂  叶丽娟  曹毅 《微生物学通报》2012,39(10):1447-1456
【目的】克隆红纹黄单胞菌α-氨基酸酯水解酶基因全序列,对序列进行生物信息学分析,并提高酶的热稳定性。【方法】利用多聚酶链式反应(PCR)克隆α-氨基酸酯水解酶基因全序列;应用生物信息学软件对获得的基因序列及编码的蛋白序列进行分析;通过同源建模,预测红纹黄单胞菌α-氨基酸酯水解酶的三维结构;通过定点突变替换氨基酸序列中高度柔性的位点,提高该酶的热稳定性。【结果】从红纹黄单胞菌(Xanthomonas rubrillineans)中扩增得到α-氨基酸酯水解酶基因aeh(GenBank登录号JF744990),核苷酸序列长度1 917 bp,编码638个氨基酸。序列比对和同源性分析显示,该酶与白纹黄单胞菌Xanthomonas albilineans str.GPE PC73的肽酶及地毯草黄单胞菌Xanthomonas axono-podis pv. citri str. 306的戊二酰-7-氨基头孢烷酸酰化酶氨基酸序列相似性最高,分别为91%和83%,系统进化分析表明,该酶与白纹黄单胞菌Xanthomonas albilineans str. GPEPC73的肽酶亲缘性最高。基于预测的三维模型,对高度柔性的位点进行饱和突变,从282株突变体中筛选得到3株T50较野生型高5°C以上的突变体。【结论】对红纹黄单胞菌AEH的氨基酸序列分析有助于探索同源蛋白的进化过程。对高度柔性位点进行饱和突变的策略可以用于提高热稳定性。  相似文献   

17.
摘 要:【目的】阐明水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae,简称Xoo)基因组中推导的脂多糖O抗原合成蛋白基因rbfCxoo (XOO2599) 的结构和生物学功能。【方法】通过基因克隆、序列分析、缺失突变和表型测定,对rbfCxoo的分子特征及其功能进行了鉴定。【结果】 用特异性引物进行PCR扩增,从野生型菌株PXO99A基因组DNA中成功地获得了与己测序菌株KACC10331序列完全一致的全长基因序列; RbfCxoo序列N端和C端分别具有一个糖基转移酶的保守结构域(Glycos_transf_2)。用标记置换法获得了基因缺失突变体△rbfCxoo。与PXO99A相比,△rbfCxoo 脂多糖O抗原合成能力并未发生变化,但鞭毛素糖基化能力有所降低。此外,△rbfCxoo鞭毛运动性、生物膜形成和胞外纤维素酶和木聚糖酶活性都无明显改变,但对水稻的致病性显著增强,毒性相关基因的表达也有所增加。【结论】RbfCxoo可能与细菌鞭毛素糖基化修饰以及毒性表达有关。  相似文献   

18.
【背景】木聚糖是生物圈中仅次于纤维素的第二大多糖,其结构复杂,完全降解需要多种木聚糖酶协同作用。β-1,4-内切木聚糖酶是木聚糖主链水解过程中最关键的酶,已广泛应用于饲料、造纸、能源、食品和医药等行业。但在实际应用中,由于真菌木聚糖酶的热稳定性较差,限制了其在工业中的应用。【目的】提高来源于黑曲霉(Aspergillusniger)的β-1,4-内切木聚糖酶(xynB)热稳定性。【方法】采用氨基酸虚拟突变技术对xynB定向引入一个N-糖基化位点,将虚拟突变后筛选获得的候选突变体和野生型在毕赤酵母SMD1168中表达,并对纯化后的野生型和突变体酶进行酶学性质和稳定性分析。【结果】经虚拟突变和筛选获得5个候选突变体,在毕赤酵母SMD1168中成功表达了4个突变体,其中3个突变体发生了糖基化。突变体和野生型酶均表现出宽范围的酸碱耐受性,且突变体xynB~(A92N/D94T)在pH4.0–11.0条件下的稳定性明显优于野生型;糖基化突变体xynB~(A92N/D94T)、xynB~(G66N/A68T)和xynB~(G66F/D67N/G69T)在温度为60–80°C时热稳定性明显高于野生型,xynB~(G66N/A68T)在80°C保温30 min后的残留酶活比野生型提高了约30%。【结论】本研究方法可为其他来源木聚糖酶和其他工业酶的热稳定分子改造提供参考。  相似文献   

19.
【目的】开发一种新型的大肠杆菌表面展示系统,为C末端截短NCgl1221蛋白作为锚定蛋白提供科学依据,丰富并优化细菌表面展示系统。【方法】扩增C末端截短NCgl1221序列和β-淀粉酶基因,构建融合蛋白表达载体。将重组载体PET-NA和空载体PET-28a分别转入Rosetta(DE3)pLysS中,IPTG诱导表达,SDS-PAGE和Western blot鉴定融合蛋白表达情况。将诱导表达菌株进行免疫荧光染色,荧光显微镜观察和流式细胞分析检测β-淀粉酶的展示。酶活测定和淀粉水解分析验证被展示β-淀粉酶的活性。【结果】融合蛋白成功地在大肠杆菌中表达,有活性的β-淀粉酶通过与锚定蛋白C末端的融合被展示在了宿主菌表面,展示β-淀粉酶的重组菌可以水解利用培养基中的淀粉。【结论】成功开发了一种以C末端截短NCgl1221为锚定蛋白的新型大肠杆菌表面展示系统,并以此系统展示了分子量大小为56 kDa的活性酶,为该系统在全细胞催化剂或吸附剂等方面的应用奠定了基础。  相似文献   

20.
【背景】以酵母为宿主生产的蛋白往往发生过糖基化,形成高甘露糖型的N-糖基化。高甘露糖型的结构易在人体中引起免疫反应,这是酵母不能用于绝大部分糖蛋白药物生产的主要限制因素。因此,构建表达人源糖基化糖蛋白的酵母底盘细胞将为糖蛋白药物的生产提供强有力的工具。库德里阿兹威氏毕赤酵母(Pichia kudriavzevii)具有极强的抗逆性且生长迅速,是一种近年来备受关注的非典型性酵母,对其进行糖基化途径的改造将具有巨大的应用前景。【目的】对酵母N-糖基化途径的改造,首先要使其N-糖基化转变为Man5GlcNAc2核心结构,本研究对P. kudriavzevii的och1基因进行敲除并引入源自曲霉的msd S基因,以改变其分泌糖蛋白N-糖链的糖型结构。【方法】通过基因编辑对P. kudriavzevii的N-糖基化途径进行改造,获得P. kudriavzeviiΔura3Δoch1::msd S菌株,分析P. kudriavzeviiΔura3Δoch1::msd S菌株分泌糖蛋白上N-糖组的变化。【结果】与野生型P. kudriavzevii相...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号