首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
目的:构建温敏型三嵌段共聚物,研究其理化性质以及用其制备的可注射更昔洛韦温敏型原位凝胶剂的制剂特性。方法:以聚乙二醇(PEG)作为亲水嵌段,丙交酯(LA)和β- 丁内酯(β-BL)的无规共聚物PBLA 作为疏水嵌段,采用开环聚合法合成温敏型三嵌段共聚物PBLA-PEG-PBLA,并对其理化性质进行表征,考察其溶液的胶凝温度/ 临界凝胶浓度、流变学性质、通针性和溶蚀行为以及以更昔洛韦作为模型药物、用其制得的可注射载药温敏型原位凝胶剂的体外释放特性。结果:合成的PBLA-PEG-PBLA 嵌段共聚物重均分子质量在6 000 左右,多分散系数为1.5 左右;其溶液临界凝胶浓度(g?mL-1)为5%~10%,质量浓度(g?mL-1)在10%~25% 时胶凝温度为31~35 ℃,接近并略低于体温;其凝胶在低温下储能模量与黏度较小,当温度接近相转变温度后两者迅速增大;其载药凝胶剂累计释放量经拟合显示遵循一级动力学方程,并呈扩散释药机制。结论:较低质量浓度[10%~15%(g?mL-1)] 的PBLA-PEG-PBLA 更符合玻璃体注射要求,更适用于制备可注射载药温敏型原位凝胶剂。  相似文献   

2.
段晓  李伟  乔友备  范黎  吴红 《现代生物医学进展》2013,13(14):2625-2628,2621
目的:为构建聚合物胶束药物运载体系,制备嵌段共聚物聚乙二醇-聚苹果酸苄基酯载药胶束并测定其性质。方法:以L-天冬氨酸为原料,重氮化、环化后经开环聚合得到聚苹果酸苄基酯。氨基聚乙二醇通过酰胺键连接到β-聚苹果酸苄基酯上形成两亲性嵌段共聚物,喜树碱做药物模型制备载药胶束。动态光散射法测定胶束粒径、评价胶束稳定性,高效液相法测定喜树碱载药率和包封率,芘荧光法与动态光散射法测定临界胶束浓度。结果:喜树碱包封率72%,载药率6%,临界胶束浓度为40μg.mL-1。随着聚苹果酸苄基酯分子量减小,胶束稳定性增强。结论:聚乙二醇-聚苹果酸苄基酯在疏水链/亲水链分子量比值为2-4时在水中可自组装形成纳米胶束,可作为性能优良的聚合物药物载体。  相似文献   

3.
近年来,温敏水凝胶被广泛用于药物递送、组织工程等生物医用领域.其中,由聚乙二醇与脂肪族可降解聚酯合成的两亲性聚合物的自组装胶束形成的温敏水凝胶是一种重要的温敏凝胶材料.本文针对聚乙二醇(PEG)与聚己内酯(PCL)形成的两亲性嵌段聚合物温敏水凝胶体系,综述了聚合物分子质量、嵌段序列结构,亲疏水段分子质量与比例、疏水段化学结构等因素对温敏行为的影响,以及该温敏水凝胶在局部药物递送方面的研究进展.  相似文献   

4.
裂褶多糖的吸湿和保湿性能初步研究   总被引:10,自引:2,他引:8  
通过干燥器控制湿度的方法对经冷冻干燥的裂褶多糖(PSG)试样进行吸湿和保湿性能测试,其48h吸湿率和保湿率分别为44.75%、63.06%;168h吸湿率和保湿率分别为112.28%、4.06%。和常用的化妆品保湿剂甘油、透明质酸钠、壳聚糖、聚乙二醇(PEG)进行比较,试验条件下0-168h各试样吸湿能力大小为:PSG〉甘油〉透明质酸钠〉壳聚糖〉PEG10000;48h综合保湿能力大小为:PSG〉甘油〉透明质酸钠〉壳聚糖〉PEG10000;168h综合保湿能力大小为:甘油〉PSG〉壳聚糖〉透明质酸钠〉PEG10000。采用差示扫描量热法(DSC)对裂褶多糖的热力学参数进行了测定,其相变起始温度为53.12℃,高峰温度为97.71℃,终了温度为148.30℃,焓变△H为126.743 J/g。裂褶多糖表现出良好的吸湿和保湿性能,因而是一种很有开发潜力的天然保湿剂。  相似文献   

5.
毛果苔草湿地枯落物及地下生物量动态   总被引:13,自引:0,他引:13  
采用网袋法和土柱法分别对三江平原湿地毛果苔草(Carex lasiocarpa)种群枯落物及地下生物量的季节动态变化规律进行分析。结果表明,毛果苔草的立枯物总的变化趋势是其拟合曲线符合指数方程。以其凋落物的失重率表示分解速率,而日失重率是随着时间增长而不断减少,且日失重率的变化在0.7058%-0.2372%之间。毛果苔草全生长季(1999年5月2日-10月10日)枯落物总量为210.8876g·m^-2。毛果苔草地下生物量具有明显的垂直结构,呈倒金字塔形,数学模拟近于抛物线型。  相似文献   

6.
聚乙二醇-聚乳酸嵌段共聚物在药物递送系统中的应用   总被引:1,自引:0,他引:1  
聚乙二醇-聚乳酸嵌段共聚物具备良好的生物相容性和生物可降解性,是良好的纳米级药物载体。嵌段共聚物具有载药能力强、粒径小、体内循环时间长、主动靶向性和被动靶向性等特点,因此在药物递送系统中得到广泛应用。简要介绍了聚乙二醇-聚乳酸嵌段共聚物的合成和性质,及其作为脂质体、胶束、微球等载体在药物递送系统中的最新进展。  相似文献   

7.
研究新疆地区广泛分布的一年生盐生植物灰绿藜种子的萌发特性及其对生境适应性的结果表明:(1)灰绿藜种子萌发的温度范围较广,在15-45℃范围内均有50%以上的种子可以正常萌发,其对高温的耐受力较强,对光不敏感;(2)在一定浓度的聚乙二醇(PEG6000)范围内(≤25%),PEG引起的渗透胁迫对灰绿藜种子萌发的抑制作用较小,但随着PEG浓度的加大其戍苗率逐渐下降;(3)灰绿藜种子在萌发时有较高的耐盐性,NaCl和KCl浓度达到400mmol.L^-1时种子的萌发率仍在90%以上;盐对灰绿藜种子萌发的抑制作用主要表现为种子萌发时间的延迟:低浓度的NaCl和KCl对灰绿藜幼苗生长均有促进作用,子叶生长状态明显改善,胚轴的生长也受到促进。  相似文献   

8.
以2-溴乙酸、壳聚糖、二(2-苯并咪唑)-1,2-乙二醇为原料,利用接枝作用将化学修饰后的小分子药物二(2-苯并咪唑)-1,2-乙二醇连接在天然高分子壳聚糖(CTS)上。并以。HNMR,IR,热分析及XRD等方法对其结构进行表征并研究接枝聚合物的理化性质。本文采用络合滴定法测定了接枝聚合物对一系列重金属离子的吸附作用;采用震荡法进行悬菌定量杀菌实验;还以经典的静态失重法研究了合成的聚合物在腐蚀介质中对N80钢片腐蚀的抑制作用。结果表明:小分子药物-(2-苯并咪唑)-1,2-乙二醇在接枝到天然高分子壳聚糖后热稳定性提高,在酸中具有良好的溶解度,对金属离子吸附能力在一个较宽温度范围内得以保持;同时增强了抑菌力,降低了最小抑菌浓度;利用BBIE与CTS韵协同作用提高了聚合物对金属腐蚀的抑制能力。  相似文献   

9.
聚乙二醇丙烯酸酯的合成与表征   总被引:4,自引:0,他引:4       下载免费PDF全文
以聚乙二醇-400(PEG400)与丙烯酸直接缩合反应,在不加有毒带水剂的条件下合成了丙烯酸聚乙二醇酯(PEGA)。通过正交实验确定酯化反应的最佳条件:丙烯酸/PEG400的摩尔比为2.0:1.0,反应温度是110℃,阻聚剂对苯二酚为0.4%(以醇酸总质量计),反应时间为6小时,催化剂对甲苯磺酸为0.8%(以醇酸总质量计),产率为76.7%。产品结构经IR和1HNMR表征,证明是所需的产物。  相似文献   

10.
BMSCs在PLGA-[ASP-PEG]基质材料表面粘附及增殖的研究   总被引:4,自引:0,他引:4  
目的:探讨大鼠骨髓间充质干细胞BMSCs在聚丙交酯/乙交酯/天冬氨酸-聚乙二醇三嵌段多元共聚物 PLGA-[ASP-PEG]表面粘附、增殖的情况,为组织工程学体外诱导种子细胞生长提供新的生物材料。方法:在PLGA支架材料中引入聚乙二醇(PEG)和含有多个功能位点的天冬氨酸(ASP),制成PLGA-[ASP-PEG]高分子支架材料。 将PLGA-[ASP-PEG]支架材料与BMSCs复合培养,以未改性的PLGA支架材料作对照,通过沉淀法、MTT法和考马斯亮蓝法分别检测BMSCs的粘附和增殖变化;扫描电镜观察黏附细胞的形态。结果 BMSCs在PLGA-[ASP-PEG]材料表面帖壁生长,细胞数目明显多于单纯PLGA组。细胞粘附率检测显示:改性后的PLGA-[ASP-PEG]表面BMSCs的粘附性能和增殖能力明显高于对照组,P<0.05。MTT比色试验,BMSCs在三嵌段材料上培养20d后,吸光值A=1.336,约为对照组0.780的两倍。细胞内蛋白总量间接反映细胞黏附及增殖情况。培养12d时,在PLGA-[ASP-PEG]材料组细胞的蛋白含量为66.44μg/孔,单纯PLGA组为41.23μg/孔,间接说明了三嵌段材料生物相容性好,细胞黏附力强的特点。结论PLGA-[ASP-PEG]能促进组织工程种子细胞在骨基质材料表面的黏附、增殖并能较好地保持细胞的形态。  相似文献   

11.
Eight-arm poly(ethylene glycol)-poly(L-lactide), PEG-(PLLA)(8), and poly(ethylene glycol)-poly(D-lactide), PEG-(PDLA)(8), star block copolymers were synthesized by ring-opening polymerization of either L-lactide or D-lactide at room temperature in the presence of a single-site ethylzinc complex and 8-arm PEG (M(n) = 21.8 x 10(3) or 43.5 x 10(3)) as a catalyst and initiator, respectively. High lactide conversions (>95%) and well-defined copolymers with PLLA or PDLA blocks of the desired molecular weights were obtained. Star block copolymers were water-soluble when the number of lactyl units per poly(lactide) (PLA) block did not exceed 14 and 17 for PEG21800-(PLA)(8) and PEG43500-(PLA)(8), respectively. PEG-(PLA)(8) stereocomplexed hydrogels were prepared by mixing aqueous solutions with equimolar amounts of PEG-(PLLA)(8) and PEG-(PDLA)(8) in a polymer concentration range of 5-25 w/v % for PEG21800-(PLA)(8) star block copolymers and of 6-8 w/v % for PEG43500-(PLA)(8) star block copolymers. The gelation is driven by stereocomplexation of the PLLA and PDLA blocks, as confirmed by wide-angle X-ray scattering experiments. The stereocomplexed hydrogels were stable in a range from 10 to 70 degrees C, depending on their aqueous concentration and the PLA block length. Stereocomplexed hydrogels at 10 w/v % polymer concentration showed larger hydrophilic and hydrophobic domains as compared to 10 w/v % single enantiomer solutions, as determined by cryo-TEM. Correspondingly, dynamic light scattering showed that 1 w/v % solutions containing both PEG-(PLLA)(8) and PEG-(PDLA)(8) have larger "micelles" as compared to 1 w/v % single enantiomer solutions. With increasing polymer concentration and PLLA and PDLA block length, the storage modulus of the stereocomplexed hydrogels increases and the gelation time decreases. Stereocomplexed hydrogels with high storage moduli (up to 14 kPa) could be obtained at 37 degrees C in PBS. These stereocomplexed hydrogels are promising for use in biomedical applications, including drug delivery and tissue engineering, because they are biodegradable and the in-situ formation allows for easy immobilization of drugs and cells.  相似文献   

12.
Obeid R  Scholz C 《Biomacromolecules》2011,12(10):3797-3804
Poly(ethylene glycol) (PEG) and poly(2-methyl-2-oxazoline) (PMOx) are water-soluble, biocompatible polymers with stealth hemolytic activities. Poly(amino acid) (PAA) end-capped PEG and PMOx were prepared using amino-terminated derivatives of PEG and PMOx as macroinitiators for the ring-opening polymerization of γ-benzyl protected l-glutamate N-carboxyanhydride and S-benzyloxycarbonyl protected l-cysteine N-carboxyanhydride, respectively, in the presence of urea, at room temperature. The molecular weight of the PAA moiety was kept between M(n) = 2200 and 3000 g mol(-1). PMOx was polymerized by cationic ring-opening polymerization resulting in molecular weights of M(n) = 5000 and 10,000 g mol(-1), and PEG was a commercial product with M(n) = 5000 g mol(-1). Here, we investigate the self-assembly of the resulting amphiphilic block copolymers in water and the effect of the chemical structure of the block copolymers on the solution properties of self-assembled nanostructures. The PEG-block-poly(amino acid), PEG-b-PAA, and PMOx-block-poly(amino acid), PMOx-b-PAA, block copolymers have a narrow and monomodal molecular weight distribution (PDI < 1.3). Their self-assembly in water was studied by dynamic light scattering and fluorescence spectroscopy. In aqueous solution, the block copolymers associate into particles with hydrodynamic radii (R(H)) ranging in size from R(H) 70 to 130 nm, depending on the block copolymer architecture and the polymer molecular weight. Larger R(H) and critical association concentration values were obtained for copolymers containing poly(S-benzyloxycarbonyl-l-cysteine) compared to their poly(γ-benzyl-L-glutamate) analogue. FTIR investigations revealed that the poly(γ-benzyl-L-glutamate) block adopts a helical conformation, while the poly(S-benzyloxycarbonyl-L-cysteine) block exists as β-sheet.  相似文献   

13.
"Stealth" nanoparticles made from polymer micelles have been widely explored as drug carriers for targeted drug delivery. High stability (i.e., low critical micelle concentration (CMC)) is required for their intravenous applications. Herein, we present a "core-surface cross-linking" concept to greatly enhance nanoparticle's stability: amphiphilic brush copolymers form core-surface cross-linked micelles (nanoparticles) (SCNs). The amphiphilic brush copolymers consisted of hydrophobic poly(epsilon-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) or poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMA) chains were synthesized by macromonomer copolymerization method and used to demonstrate this concept. The resulting SCNs were about 100 times more stable than micelles from corresponding amphiphilic block copolymers. The size and surface properties of the SCNs could be easily tailored by the copolymer's compositions.  相似文献   

14.
Eight-armed poly(ethylene glycol)-poly(trimethylene carbonate) star block copolymers (PEG-(PTMC)(8)) linked by a carbamate group between the PEG core and the PTMC blocks were synthesized by the metal-free, HCl-catalyzed ring-opening polymerization of trimethylene carbonate using an amine-terminated eight-armed star PEG in dichloromethane. Although dye solubilization experiments, nuclear magnetic resonance spectroscopy, and dynamic light scattering clearly indicated the presence of aggregates in aqueous dispersions of the copolymers, no physical gelation was observed up to high concentrations. PEG-(PTMC(9))(8) was end-group-functionalized using acryloyl chloride and photopolymerized in the presence of Irgacure 2959. When dilute aqueous dispersions of PEG-(PTMC(9))(8)-Acr were UV irradiated, chemically cross-linked PEG-PTMC nanoparticles were obtained, whereas irradiation of more concentrated PEG-(PTMC(9))(8)-Acr dispersions resulted in the formation of photo-cross-linked hydrogels. Their good mechanical properties and high stability against hydrolytic degradation make photo-cross-linked PEG-PTMC hydrogels interesting for biomedical applications such as matrices for tissue engineering and controlled drug delivery systems.  相似文献   

15.
Li X  Liu KL  Li J  Tan EP  Chan LM  Lim CT  Goh SH 《Biomacromolecules》2006,7(11):3112-3119
Novel biodegradable amphiphilic alternating block copolymers based on poly[(R)-3-hydroxybutyrate] (PHB) as biodegradable and hydrophobic block and poly(ethylene glycol) (PEG) as hydrophilic block (PHB-alt-PEG) were successfully synthesized through coupling reaction. Their chemical structures have been characterized by using gel permeation chromatography, (1)H nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) analysis revealed that both PHB and PEG blocks in PHB-alt-PEG block copolymers can crystallize to form separate crystalline phase except in those with a short PEG block (M(n) 600) only PHB crystalline phase has been observed. However, due to the mutual interference from each other, the melting transition of both PHB and PEG crystalline phases shifted to lower temperature with lower crystallinity in comparison with corresponding pure PHB and PEG. The crystallization behavior of PHB block and PEG block has also been studied by X-ray diffraction, and the results were in good agreement with those deduced from DSC study. The surface morphologies of PHB-alt-PEG block copolymer thin films spin-coated on mica have been visualized by atomic force microscopy with tapping mode, indicating formation of laterally regular lamellar surface patterns. Static water contact angle measurement revealed that surface hydrophilicity of these spin-coated thin films increases with increasing PEG block content.  相似文献   

16.
For two series of polyethylenimine-graft-poly(ethylene glycol) (PEI-g-PEG) block copolymers, the influence of copolymer structure on DNA complexation was investigated and physicochemical properties of these complexes were compared with the results of blood compatibility, cytotoxicity, and transfection activity assays. In the first series, PEI (25 kDa) was grafted to different degrees of substitution with PEG (5 kDa) and in the second series the molecular weight (MW) of PEG was varied (550 Da to 20 kDa). Using atomic force microscopy, we found that the copolymer block structure strongly influenced the DNA complex size and morphology: PEG 5 kDa significantly reduced the diameter of the spherical complexes from 142 +/- 59 to 61 +/- 28 nm. With increasing degree of PEG grafting, complexation of DNA was impeded and complexes lost their spherical shape. Copolymers with PEG 20 kDa yielded small, compact complexes with DNA (51 +/- 23 nm) whereas copolymers with PEG 550 Da resulted in large and diffuse structures (130 +/- 60 nm). The zeta-potential of complexes was reduced with increasing degree of PEG grafting if MW >or= 5 kDa. PEG 550 Da did not shield positive charges of PEI sufficiently leading to hemolysis and erythrocyte aggregation. Cytotoxicity (lactate dehydrogenase assay) was independent of MW of PEG but affected by the degree of PEG substitution: all copolymers with more than six PEG blocks formed DNA complexes of low toxicity. Finally, transfection efficiency of the complexes was studied. The combination of large particles, low toxicity, and high positive surface charge as in the case of copolymers with many PEG 550 Da blocks proved to be most efficient for in vitro gene transfer. To conclude, the degree of PEGylation and the MW of PEG were found to strongly influence DNA condensation of PEI and therefore also affect the biological activity of the PEI-g-PEG/DNA complexes. These results provide a basis for the rational design of block copolymer gene delivery systems.  相似文献   

17.
He C  Sun J  Deng C  Zhao T  Deng M  Chen X  Jing X 《Biomacromolecules》2004,5(5):2042-2047
Poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers PEG-PCL were synthesized by ring-opening polymerization of epsilon-caprolactone using monomethoxy poly(ethylene glycol) as the macroinitiator and calcium ammoniate as the catalyst. Obvious mutual influence between PEG and PCL crystallization was studied by altering the relative block length. Fixing the length of the PEG block (Mn = 5000) and increasing the length of the PCL block, the crystallization temperature of the PCL block rose gradually from 1 to about 35 degrees C while that of the PEG block dropped from 36 to -6.6 degrees C. Meanwhile, the melting temperature of the PCL block went up from 30 to 60 degrees C, while that of the PEG block declined from 60 to 41 degrees C. If the PCL block was longer than the PEG block, the former would crystallize first when cooling from a molten state and led to obviously imperfect crystallization of PEG and vice versa. And they both crystallized at the same temperature, if their weight fractions were equal. We found that the PEG block could still crystallize at -6.6 degrees C even when its weight fraction is only 14%. A unique morphology of concentric spherulites was observed for PEG5000-PCL5000. According to their morphology and real-time growth rates, it is concluded that the central and outer sections in the concentric spherulites were PCL and PEG, respectively, and during the formation of the concentric spherulite, the PEG crystallized quickly from the free space of the PCL crystal at the earlier stage, followed by outgrowing from the PCL spherulites in the direction of right angles to the circle boundaries until the entire area was occupied.  相似文献   

18.
Electrospun fibers that are protein resistant and functionalized with bioactive signals were produced by solution electrospinning amphiphilic block copolymers. Poly (ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PDLLA) was synthesized in two steps, with a PEG segment of 10 kDa, while the PDLLA block ranged from 20 to 60 kDa. Depending on the PEG and PDLLA segment ratio, as well as solvent selection, the hydrophilicity and protein adsorption could be altered on the electrospun mesh. Furthermore, an alpha-acetal PEG-b-PDLLA was synthesized that allowed the conjugation of active molecules, resulting in surface functionalization of the electrospun fiber. Electrospun material with varying morphologies and diameter were electrospun from 10, 20, and 30 wt.% solutions. Sessile drop measurements showed a reduction in the contact angle from 120 degrees for pure poly(D,L-lactide) with increasing PEG/PDLLA ratio. All electrospun block PEG-b-PDLLA fibers had hydrophilic properties, with contact angles below 45 degrees . The fibers were collected onto six-arm star-poly(ethylene glycol) (star-PEG) coated silicon wafers and incubated with fluorescently labeled proteins. All PEG-b-PDLLA fibers showed no detectable adsorption of bovine serum albumin (BSA) independent of their composition while a dependence between hydrophobic block length was observed for streptavidin adsorption. Fibers of block copolymers with PDLLA blocks smaller than 39 kDa showed no adsorption of BSA or streptavidin, indicating good non-fouling properties. Fibers were surface functionalized with N(epsilon)-(+)-biotinyl-L-lysine (biocytin) or RGD peptide by attaching the molecule to the PEG block during synthesis. Protein adsorption measurements, and the controlled interaction of biocytin with fluorescently labeled streptavidin, showed that the electrospun fibers were both resistant to protein adsorption and are functionalized. Fibroblast adhesion was contrasting between the unfunctionalized and RGD-coupled electrospun fabrics, confirming that the surface of the fibers was functionalized. The PEG-b-PDLLA surface functionalized electrospun fibers are promising substrates for controlling cell-material interactions, particularly for tissue-engineering applications.  相似文献   

19.
Lin S  Du F  Wang Y  Ji S  Liang D  Yu L  Li Z 《Biomacromolecules》2008,9(1):109-115
Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.  相似文献   

20.
Copolymers with different hydrophilic/lipophilic ratios (HLR) were used to optimize the compatibility between polymer as drug carrier and quercetin as lipophilic drug. Synthesis of amphiphilic triblock copolymers (TC) of poly(butylene adipate)–poly(ethylene glycol)–poly(butylene adipate) (PBA–PEG–PBA) with different PBA molecular weights is the first approach for this purpose. Polymerization and structural features of the polymers were analyzed by different characterization techniques (GPC, 1H NMR and FT-IR). Formation of hydrophobic and hydrophilic domains with different ratios in the ABA-triblock copolymers was studied by 1H NMR. The sunflower-like nanoparticles were prepared by self-assembling of the amphiphilic copolymers in the aqueous solution. The hydrophobic PBA segments formed the central solid-like core which stabilized by the hydrophilic PEG rings. The optimum HLR for these copolymers was determined on the basis of drug release time and profile, obtained from freeze-dried nanoparticle powders. The results indicated that optimum HLR for the sustained quercetin release obtained at higher molecular weight of polyesteric domains. Zeta potential measurements showed that the nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, TEM pictures showed that the nanocarriers morphologies were changed by changing HLR of triblock copolymers. The PBA–PEG–PBA nanoparticles also showed good drug loading properties, suggesting that they were very suitable as delivery devices for hydrophobic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号