首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   627088篇
  免费   67201篇
  国内免费   8581篇
  2021年   7850篇
  2020年   6414篇
  2019年   7818篇
  2018年   9368篇
  2017年   8170篇
  2016年   11192篇
  2015年   14989篇
  2014年   17858篇
  2013年   23082篇
  2012年   26348篇
  2011年   25774篇
  2010年   16894篇
  2009年   15441篇
  2008年   20456篇
  2007年   20478篇
  2006年   18777篇
  2005年   17276篇
  2004年   16609篇
  2003年   15736篇
  2002年   14841篇
  2001年   29711篇
  2000年   29414篇
  1999年   23176篇
  1998年   7450篇
  1997年   8004篇
  1996年   7331篇
  1995年   6933篇
  1994年   6676篇
  1993年   6479篇
  1992年   17670篇
  1991年   16764篇
  1990年   16040篇
  1989年   15534篇
  1988年   14165篇
  1987年   13183篇
  1986年   12231篇
  1985年   12023篇
  1984年   9757篇
  1983年   8186篇
  1982年   6049篇
  1981年   5410篇
  1979年   8974篇
  1978年   6844篇
  1977年   6320篇
  1976年   5677篇
  1975年   6280篇
  1974年   6801篇
  1973年   6579篇
  1972年   6009篇
  1971年   5442篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Kernel size and kernel weight are important factors possibly involved in the determination of grain yield in maize, so identifying the genetic basis of kernel-related traits provides insights into the breeding of high-yield maize varieties. Kernel length (KL), kernel width (KW) and hundred kernel weight (HKW) were evaluated in three various planting conditions for the 240 field-grown double haploid (DH) lines derived from the single-cross hybrid Xianyu335. Variations in KL, KW and HKW were observed among DH lines, and all three traits showed a broad sense heritability of 76%. A total of 964 single nucleotide polymorphisms (SNPs) from the MaizeSNP3072 chip was utilised to create a high-density genetic map of 1546.4 cM and to identify quantitative trait loci (QTLs). Using composite interval mapping, a total of five, seven and five QTLs have been mapped for KL, KW and HKW, respectively. qkl1-2 and qkl4-1 explained 17.8% and 14.2% of the phenotypic variation in KL, respectively, and the other three QTLs contributed 3.2–4.0%. The phenotypic variation explained (PVE) of seven QTLs responsible for KW ranged from 3.3 to 9.5%. Three QTLs for HKW, qhkw1, qhkw5 and qhkw10 each explained more than 10% of the phenotypic variation, and qhkw4 and qhkw9 accounted for 3.0% and 6.0%, respectively. Due to their detection in multiple planting environments, the loci mapped here appear to be potential targets for the improvement of maize grain yield.  相似文献   
2.
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10?5 M) in the presence of selective M2 antagonist methoctramine (10?7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10?8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10?5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10?6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.  相似文献   
3.
4.
Landscape features affect habitat connectivity and patterns of gene flow and hence influence genetic structure among populations. We studied valley oak (Quercus lobata), a threatened species of California (USA) savannas and oak woodlands, with a distribution forming a ring around the Central Valley grasslands. Our main goal was to determine the role of topography and land cover on patterns of gene flow and to test whether elevation or land cover forms stronger barriers to gene flow among valley oak populations. We sampled valley oaks in 12 populations across the range of this species, genotyped each tree at eight nuclear microsatellite loci, and created a series of resistance surfaces by assigning different resistance values to land cover type and elevation. We also estimated recent migration rates and evaluated them with regard to landscape features. There was a significant but weak relationship between Euclidian distance and genetic distance. There was no relationship between genetic distances and land cover, but a significant relationship between genetic distances and elevation resistance. We conclude that gene flow is restricted by high elevations in the northern part of the valley oak range and by high elevations and the Central Valley further south. Migration rate analysis indicated some gene flow occurring east–west but we suggest that the high connectivity in the northern Central Valley is facilitating the formation of these links. We predict that southern populations may become more differentiated in the future through genetic isolation and local adaptation taking place in the face of climate change.  相似文献   
5.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
6.
This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2g L−1, initial Cr(VI) concentration of 62.5 mg L−1 and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed.  相似文献   
7.
8.
9.
The activation of endothelial cells is essential to repair damage caused by atherosclerosis via endothelial cell proliferation and migration. Overexpression of VEGF (vascular endothelial growth factor) and the downstream gene, B-cell lymphoma-2 (BCL-2) could result in apoptosis-resistant endothelial cells, which are responsible for aggravated hyperplasia and instable plaques generation. Previous studies have shown that miRNA126 could regulate the expression of VEGF. Here, we verified the existence of a miRNA126 binding site in VEGF’s 3’UTR. Additionally, VEGF regulated BCL-2 expression via AP1 (Activator Protein 1) binding site in BCL-2’s promoter. Next, we established an apoptosis-resistant endothelial cell line and constructed a lentiviral vector to express miRNA126 under the control of the BCL-2 promoter to investigate whether conditional expression of miRNA126 could modulate VEGF and BCL-2 expression in apoptosis-resistant endothelial cells. This lentiviral system specifically expressed miRNA126 in cells with high BCL-2 levels, downregulated VEGF expression, inhibited MAPK pathway activation and downregulated BCL-2 expression via suppression of AP1, and as a whole, reduced apoptosis-resistant endothelial cells, while the effects of miRNA126 on normal endothelial cells were relatively small. Our results demonstrate that conditional miRNA126 overexpression under the control of the downstream BCL-2 promoter provides a flexible regulatory strategy for reducing the apoptosis-resistant endothelial cells without having a significant impact on normal endothelial cells.  相似文献   
10.
Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号