首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inefficient delivery of antisense oligonucleotides (AOs) to target cell nuclei remains as the foremost limitation to their usefulness. Copolymers of cationic poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) have been well-studied for delivery of plasmids. However, the properties of PEG-PEI-AO polyplexes have not been comprehensively investigated. Therefore, we synthesized a series of PEG-PEI copolymers and evaluated their physiochemical properties alone and when complexed with AO. The M(w) of PEG was found to be the main determinant of polyplex size, via its influence on particle aggregation. DLS measurements showed that when PEG5000 was grafted to PEI2K and PEI25K, polyplex diameters were extremely small (range 10-90 nm) with minimal aggregation. In contrast, when PEG550 was grafted to PEI2K and PEI25K, polyplexes appeared as much larger aggregates (approximately 250 nm). As expected, the surface charge (zeta potential) was higher for polyplexes containing PEI25K than those containing PEI2K, but decreased with increased levels of PEG grafting. Surprisingly, within the physiological range (pH 7.5-5), the buffering capacity of all copolymers was nearly equivalent to that of unsubstituted PEI2K or PEI25K, and was barely influenced by PEGylation. The stability of polyplexes was evaluated using a heparin polyanion competition assay. Unexpectedly, polyplexes containing PEI2K showed stability equal to or greater than that of PEI25K polyplexes. The level of PEG grafting also had a dramatic effect on polyplex stability. The relationships established between molecular formulations and polyplex size, aggregation, surface charge, and stability should provide a useful guide for future studies aimed at optimizing polymer-mediated AO delivery in cell and animal studies. A summary of the relationships between polyplex structures and recent studies of their transfection capacity is provided.  相似文献   

2.
p-Piperazinobenzaldehyde methoxy poly(ethylene glycol) (mPEG, 5 kDa) acetal was synthesized by the Buchwald-Hartwig coupling reaction from piperazine and p-bromobenzaldehyde mPEG acetal. Introduction of a maleimide moiety yielded a novel acetal-based PEGylation reagent (PEG-acetal-MAL) for pH-sensitive conjugation of PEG to thiol-functionalized biomolecules. For reversible shielding of polyplexes, PEG-acetal-MAL was conjugated to polyethylenimine (PEI). At 37 degrees C, the PEG-acetal-PEI conjugate had a half-life of 3 min at endosomal pH 5.5 and 2 h at physiological pH 7.4, respectively. PEI polyplexes containing PEG-acetal-PEI had a zeta potential of +3 mV and were stable to salt-induced aggregation for 2 h at pH 7.4. In contrast, at endosomal pH, the particles were deshielded and aggregated within 0.5 h. Epidermal growth factor or transferrin receptor-targeted polyplexes shielded with the pH-sensitive PEG-acetal mediated enhanced luciferase gene expression in receptor-expressing target cells (Renca-EGFR or K562) as compared to stably shielded control polyplexes. Thus, the novel PEG-acetal-MAL reagent may present a versatile tool for drug and gene delivery formulations when pH-sensitive PEGylation is preferred.  相似文献   

3.
Two different series of polyethylenimine (PEI) block copolymers grafted with linear poly(ethylene glycol) (PEG) were investigated as delivery systems for oligodeoxynucleotides (ODN) and ribozymes. The resulting interpolyelectrolyte complexes were characterized with respect to their physicochemical properties, protection efficiency against enzymatic degradation, complement activation, and biological activity under in vitro conditions. The effect of PEG molecular weight and the graft density of PEG blocks on complex characteristics was studied with two different series of block copolymers. The resulting ODN complexes were characterized by photon correlation spectroscopy (PCS) and laser Doppler anemometry (LDA) to determine complex size and zeta potential. Electrophoresis was performed to study the protective effects of the different block copolymers against enzymatic degradation of ODN. Intact ODN was quantified via densitometric analysis. Ribozymes, a particularly unstable type of oligonucleotides, were used to examine the influence of block copolymer structure on biological activity. The stabilization of ribozymes was also characterized in a cell culture model. Within the first series of block copolymers, the grafted PEG chains (5 kDa) had marginal influence on the complex size. Two grafted PEG chains were sufficient to achieve a neutral zeta potential. Within the second series, size and zeta potential increased with an increasing number of PEG chains. A high number of short PEG chains resulted in a decrease in complex size to values comparable to that of the homopolymer PEI 25 kDa and a neutral zeta potential, indicating a complete shielding of the charges. Complement activation decreased with an increasing number of short PEG 550 Da chains. Ribozyme complexes with PEG-PEI block copolymers achieved a 50% down-regulation of the target mRNA. This effect demonstrated an efficient stabilization and biological activity of the ribozyme, which was comparable to that of PEI 25 kDa. PEGylated PEI block copolymers represent a promising new class of drug delivery systems for ODN and ribozymes with increased biocompatibility and physical stability.  相似文献   

4.
Oral induction of a disseminated mucosal immune response with polyplex-based DNA vaccines requires the delivery of intact polyplexes (polyelectrolyte complexes formed by self-assembly of plasmid DNA with a cationic polymer) to subepithelial lymphoid tissue (e.g. Peyer's patches) within the gastrointestinal tract. This work describes the formulation of a microparticle polyplex carrier allowing the potential of this approach to be realised. PEGylated PEI/DNA polyplexes (DNA concentration 20 microg/ml) formed at N/P 5:0 (defined as the ratio of polycation amino groups to DNA phosphates) were stable to salt-induced aggregation and could be concentrated to a final DNA concentration of 1 mg/ml without polyplex size increase. Polyplexes containing 1:1 polyethylene glycol (PEG)/polyethylenimine (PEI) ratio (mass/mass) gave similar levels of luciferase gene expression in B16F10 cells compared to non-PEG complexes. Poly-(D,L-lactide-co-glycolide) (PLGA) microparticles containing PEGylated polyplexes (approximately 17% DNA encapsulation efficiency) were formulated using a modified double emulsion solvent evaporation method. The microencapsulation and release of intact polyplexes from the microparticle carrier was demonstrated using polyanion (heparin sulfate and poly(aspartic acid) (PAA)) displacement techniques and electron microscopy. Microparticles containing PEGylated polyplexes (24 microg beta-galactosidase DNA) were given orally to Wistar rats. Significant transgene expression (compared to background) was found in peripheral tissue (spleen) 72 h after administration. This work demonstrates the potential application of microparticle carriers for mucosal polyplex-based vaccination.  相似文献   

5.
Polyplexes between siRNA and poly(ethylene imine) (PEI) derivatives are promising nonviral carriers for siRNA. The polyplex stability is of critical importance for efficient siRNA delivery to the cytoplasm. Here, we investigate the effect of PEGylation at a constant ratio ( approximately 50%) on the biophysical properties of the polyplexes. Particle size, zeta potential, and stability against heparin as well as RNase digestion and reporter gene knockdown under in vitro conditions of different siRNA polyplexes were characterized. Stability and size of siRNA polyplexes were clearly influenced by PEI-PEG structure, and high degrees of substitution such as PEI(25k)-g-PEG(550)(30) resulted in large (300-400 nm), diffuse complexes (AFM) which showed condensation behavior only at high N/P ratios. All other polyplexes and the PEI control showed similar sizes (150 nm) and compact structures in AFM, with complete condensation reached at N/P ratio of 3. Stability of siRNA polyplexes against heparin displacement and RNase digestion could be modified by PEGylation. Protection against RNase digestion was highest for PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1), while siRNA/PEI provided insufficient protection. In knockdown experiments using NIH/3T3 fibroblasts stably expressing beta-galactosidase, it was shown that PEG chain length had a significant influence on biological activity of siRNA. Polyplexes with siRNA containing PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1) yielded similar efficiencies of ca. 70% knockdown as lipofectamine controls. Confocal microscopy demonstrated enhanced cellular uptake of siRNA into cytosol by polyplexes formation with PEI copolymers. In conclusion, both the chain length and graft density of PEG were found to strongly influence siRNA condensation and stability and hence affect the knockdown efficiency of PEI-PEG/siRNA polyplexes.  相似文献   

6.
We synthesized a novel arginine-grafted dendritic block copolymer, R-PAMAM-PEG-PAMAM-R G5 (PPP5-R) for gene delivery systems. Its Mw was measured as 2.74 x 104 Da by MALDI-TOF, and approximately 36 arginine residues are found to be grafted to the polymer by 1H NMR. PPP5-R was able to form polyplexes with plasmid DNA, the average size of which was about 200 nm. Positive zeta-potential values (+22 to +28 mV) of PPP5-R polyplex indicate the formation of positively charged stable polyplex particles and suggest that large dendritic blocks with high positive charge may not be fully shielded by PEG chains even after PEG-coated complex formation. PPP5-R polyplex shows enhanced water solubility due to the polymer's PEG core and also shows low cytotoxicity, representing the potential for in vivo application. We identified the greatly enhanced transfection efficiency of PPP5-R in comparison with that of native PPP5 on various cell lines. Moreover, in view of the result of various cellular uptake inhibitor treatments during a transfection step, the cellular uptake of PPP5-R polyplex leading to effective transfection is thought to be not dependent on one exclusive pathway and to have the possibility of multiple pathways (caveolae-, clathrin-, and macropinocytosis-mediated pathways), contrary to the caveolae-dependent uptake of the PPP5 polyplex lacking arginine residues.  相似文献   

7.
Stabilized PEI/DNA polyplexes were generated by cross-linking PEI with biodegradable disulfide bonds. The reaction conversion of different PEIs with the amine reactive cross-linker dithiobis(succinimidyl propionate) (DSP) was investigated, and the molecular weight of the reaction products was identified. Light scattering and microelectrophoresis were employed to assess size and zeta potential of the resulting polyplexes. Polyplex morphology and mechanic stability were investigated using atomic force microscopy. Finally, albumin and erythrocyte interactions and stability against polyanions and high ionic strength were checked. Polyplexes of PEI and DNA were prepared by two different formulation methods, either using pre-cross-linked polymers or by cross-linking polyplexes after complexation. Only the latter method yielded small (100-300 nm) polyplexes with a positive zeta potential when HMW PEI was used, whereas cross-linked LMW PEI resulted in polyplexes with increased size (>1000 nm) and zeta potentials down to -20 mV. In addition, only cross-linking after polyplex formation was able to enhance resistance against polyanion exchange and high ionic strength. AFM images revealed no changes in the morphology of cross-linked HWM PEI polyplexes, and indentation force measurements using AFM significantly increased mechanical stability of cross-linked HMW PEI polyplexes. These polyplexes also displayed significantly reduced interactions with major blood components like albumin and erythrocytes. The resulting biocompatible particles offer a means of combining enhanced polyplex stability with redox-triggered activation for in vivo application.  相似文献   

8.
Zhao X  Pan F  Zhang Z  Grant C  Ma Y  Armes SP  Tang Y  Lewis AL  Waigh T  Lu JR 《Biomacromolecules》2007,8(11):3493-3502
Although various cationic polymers have been used to condense anionically charged DNA to improve their transfection efficiency, there is still a lack of fundamental understanding about how to control the nanostructure and charge of the polyplexes formed and how to relate such information to cell transfection efficiency. In this work, we have synthesized a weak cationic and phosphorylcholine-containing diblock copolymer and used it as a model vector to deliver an antisense oligodeoxynucleotide (ODN) into HeLa cells. Small angle neutron scattering (SANS) was used to determine the copolymer/ODN polyplex structure. The SANS data revealed the formation of polyplex nanocylinders at high copolymer (N)/ODN (P) charge ratios, where N symbolizes the amine groups on the copolymer and P symbolizes the phosphate groups. However, the cylindrical lengths remained constant, indicating that the ODN binding over this region did not alter the cylindrical shape of the copolymer in solution. As the N/P ratio decreased and became close to unity the polyplex diameters remained constant, but their lengths increased substantially, suggesting the end-to-end bridging by ODN binding between copolymer cylinders. As the N/P ratios went below unity (with ODN in excess), the polyplex diameters increased substantially, indicating different ODN bridging to bundle the small polyplexes together. Transfection studies from HeLa cells indicated a steady increase in transfection efficiency with increasing cationic charge and decreasing polyplex size. Cell growth inhibition assay showed significant growth inhibition by the polyplexes coupled with weak cytotoxicity, indicating effective ODN delivery. While this study has confirmed the overall charge effect, it has also revealed progressive structural changes of the polyplexes against varying charge ratio, thereby providing useful insight into the mechanistic process behind the ODN delivery.  相似文献   

9.
Nonviral vectors for gene therapy have recently received an increased impetus because of the inherent safety problems of the viral vectors, while their transfection efficiency is generally low compared to the viral vectors. The lack of the ability to escape from the endosomal compartments is believed to be one of the critical barriers to the intracellular delivery of noviral gene vectors. This study was devoted to the design and preparation of a novel ABC triblock copolymer for constructing a pH-responsive and targetable nonviral gene vector. The copolymer, lactosylated poly(ethylene glycol)-block-poly(silamine)-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (Lac-PEG-PSAO-PAMA), consists of lactosylated poly(ethylene glycol) (A-segment), a pH-responsive polyamine segment (B-segment), and a DNA-condensing polyamine segment (C-segment). The Lac-PEG-PSAO-PAMA spontaneously associated with plasmid DNA (pDNA) to form three-layered polyplex micelles with a PAMA/pDNA polyion complex (PIC) core, an uncomplexed PSAO inner shell, and a lactosylated PEG outer shell, as confirmed by 1H NMR spectroscopy. Under physiological conditions, the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles prepared at an N/P (number of amino groups in the copolymer/number of phosphate groups in pDNA) ratio above 3 were found to be able to condense pDNA, thus adopting a relatively small size (< 150 nm) and an almost neutral surface charge (zeta approximately +5 mV). The micelle underwent a pH-induced size variation (pH = 7.4, 132.6 nm --> pH = 4.0, 181.8 nm) presumably due to the conformational changes (globule-rod transition) of the uncomplexed PSAO chain in response to pH, leading to swelling of the free PSAO inner shell at lowered pH while retaining the condensed pDNA in the PAMA/pDNA PIC core. Furthermore, the micelles exhibited a specific cellular uptake into HuH-7 cells (hepatocytes) through asialoglycoprotein (ASGP) receptor-mediated endocytosis and achieved a far more efficient transfection ability of a reporter gene compared to the Lac-PEG-PSAO/pDNA and Lac-PEG-PAMA/pDNA polyplex micelles composed of the diblock copolymers and pDNA. The effect of hydroxychloroquine as an endosomolytic agent on the transfection efficiency was not observed for the Lac-PEG-PSAO-PAMA/pDNA polyplex micelles, whereas the nigericin treatment of the cell as an inhibitor for the endosomal acidification induced a substantial decrease in the transfection efficiency, suggesting that the protonation of the free PSAO inner shell in response to a pH decrease in the endosome might lead to the disruption of the endosome through buffering of the endosomal cavity. Therefore, the polyplex micelle composed of ABC (ligand-PEG/pH-responsive segment/DNA-condensing segment) triblock copolymer would be a promising approach to a targetable and endosome disruptive nonviral gene vector.  相似文献   

10.
Interior tertiary amine groups of PAMAM-OH dendrimers (hydroxyl-terminated polyamidoamine, PAMAM) were modified by methylation to make these polymers have a more cationic character, which enabled electrostatic interaction between PAMAM-OH and plasmid DNA. A methylation reaction was dose-dependent, producing internally quaternized PAMAM-OH (QPAMAM-OH), thereby making tertiary amine/quaternary amine ratio adjustment possible. More highly condensed particles of plasmid DNA were formed as the degree of quaternization increased, whereas unmodified polymer (PAMAM-OH) could not. The location of positive charges in the internal position of QPAMAM-OH resulted in the formation of neutral polyplexes in which zeta potential leveled off near the zero value even at high charge ratios (+/-) of 10. A light scattering experiment showed that the polyplex formed by QPAMAM-OH was very small with the size of 53.3 nm at the optimum condition. QPAMAM-OH/DNA polyplexes were round-shaped with the more compact and small particles formed as the charge ratio increased. QPAMAM-OH showed much reduced cytotoxicity compared with starburst PAMAM and branched polyethyleneimine (PEI) in which shielding of interior positive charges by surface hydroxyls might be the reason for this favorable result. These results suggest that QPAMAM-OH could be a promising tool as a nonviral vector both by itself and in conjugated form with targeting ligands.  相似文献   

11.
Advancing biotechnology spurs the development of new pharmaceutically engineered gene delivery vehicles. Poly(L-histidine) ?PLH? has been shown to induce membrane fusion at endosomal pH values, whereas PLL has a well documented efficacy in polyplex formation. Therefore, N-Ac-poly(L-histidine)-graft-poly(L-lysine) ?PLH-g-PLL? was synthesized by grafting poly(L-histidine) to poly(L-lysine) ?PLL?. PLH-g-PLL formed polyplex particles by electrostatic interactions with plasmid DNA ?pDNA?. The mean particle size of the polyplexes was in the range of 117 +/- 6 nm to 306 +/- 77 nm. PLH-g-PLL gene carrier demonstrated higher transfection efficacy in 293T cells than PLL at all equivalent weight ratios with pDNA. The inclusion of chloroquine as an endosomolytic agent enhanced transfection for both PLL and PLH-g-PLL gene carriers. PLH-g-PLL enhanced beta-galactosidase expression compared to PLL, but still increased in efficacy when chloroquine was included.  相似文献   

12.
Reversibly shielded DNA polyplexes based on bioreducible poly(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA) triblock copolymers were designed, prepared and investigated for in vitro gene transfection. Two PDMAEMA-SS-PEG-SS-PDMAEMA copolymers with controlled compositions, 6.6-6-6.6 and 13-6-13 kDa, were obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN-SS-PEG-SS-CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate; PEG: 6 kDa) as a macro-RAFT agent. Like their nonreducible PDMAEMA-PEG-PDMAEMA analogues, PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers could effectively condense DNA into small particles with average diameters less than 120 nm and close to neutral zeta potentials (0 ~ +6 mV) at and above an N/P ratio of 3/1. The resulting polyplexes showed excellent colloidal stability against 150 mM NaCl, which contrasts with polyplexes of 20 kDa PDMAEMA homopolymer. In the presence of 10 mM dithiothreitol (DTT), however, polyplexes of PDMAEMA-SS-PEG-SS-PDMAEMA were rapidly deshielded and unpacked, as revealed by significant increase of positive surface charges as well as increase of particle sizes to over 1000 nm. Release of DNA in response to 10 mM DTT was further confirmed by gel retardation assays. These polyplexes, either stably or reversibly shielded, revealed a low cytotoxicity (over 80% cell viability) at and below an N/P ratio of 12/1. Notably, in vitro transfection studies showed that reversibly shielded polyplexes afforded up to 28 times higher transfection efficacy as compared to stably shielded control under otherwise the same conditions. Confocal laser scanning microscope (CLSM) studies revealed that reversibly shielded polyplexes efficiently delivered and released pDNA into the perinuclei region as well as nuclei of COS-7 cells. Hence, reduction-sensitive reversibly shielded DNA polyplexes based on PDMAEMA-SS-PEG-SS-PDMAEMA are highly promising for nonviral gene transfection.  相似文献   

13.
A gene transfer vector has been developed utilising anionic liposomes as a carrier of plasmid DNA (pEGlacZ, 7.6 kb) to transfect CD3+ T lymphocytes (Jurkat cells). The plasmid DNA that contained the Escherichia coli beta-galactosidase reporter gene was condensed using poly-l-lysine of molecular mass 20,700 (PLK99) to form a polyplex which was interacted with several anionic liposome formulations to form lipopolyplexes. The liposome formulations where based on dioleoylphosphatidylethanolamine (DOPE) in combination with cholesterol and dioleoylphosphatidylcholine (DOPC) and oleic acid, or dimyristoylphosphatidylethanolamine (DMPE). For targeting to the Jurkat cells distearoylphosphatidylethanolamine (DSPE) linked to poly (ethylene glycol) molecular mass 2,000 and coupled to anti-CD3 antibody was incorporated. The polyplexes and lipopolyplexes were characterised in terms of size, zeta potential, agarose gel electrophoresis and electron microscopy and the permeability of the lipopolyplexes to liposome-encapsulated glucose was determined. The polyplexes consisted of a mixed population of rod-like structures (53-160 nm long and 23-31 nm diameter) and spheres (18-30 nm diameter). The lipopolyplexes retained a permeability barrier although were more permeable to glucose than their component liposomes. The poly-l-lysine condensing agent was still susceptible to pronase digestion suggesting that the polyplex was associated with the outer surface of the liposome. The lipopolyplexes with lipid composition DOPE/cholesterol/OA/DSPE-PEG2000 anti-CD3+ PLK99-plasmid DNA had significant gene transfer activity, as monitored by beta-galactosidase expression, that depended on the charge ratio of the component polyplex and the lipid/DNA weight ratio. The anti-CD3 antibody, the liposomal lipid and pH sensitivity were essential for transfection activity.  相似文献   

14.
An effective pH-sensitive gene transfer vector has been developed utilising anionic liposomes with various formulations as a carrier of plasmid DNA (pEGlacZ, 7.6 kb) to transfect CD3 T+ lymphocytes (Jurkat cells). The plasmid DNA was condensed using poly-l-lysines with a range of molecular masses to form polyplexes that were interacted with several anionic liposome formulations to form lipopolyplexes. For targeting to the Jurkat cells, distearoylphosphatidylethanolamine (DSPE) linked to poly (ethylene glycol) molecular mass 2000 and coupled to anti-CD3 antibody was incorporated in the liposomes. The polyplexes and lipopolyplexes were characterised in terms of size, zeta potential, gel electrophoresis and electron microscopy. The gene transfer activity of the lipopolyplexes, assessed from beta-galactosidase expression, depended on the charge ratio (NH(3)+/PO(4)-) of the component polyplex and the lipid/DNA weight ratio of the lipopolyplex.  相似文献   

15.
One-component homopolymers of cationic monomers (polycations) and diblock copolymers comprising poly(ethylene glycol) (PEG) and a polycation block have been the most widely used types of polymers for the formulation of polymer-based gene delivery systems. In this study, we incorporate a hydrophobic middle block into the conventional PEG-polycation architecture and investigate the effects of this hydrophobic modification on the physicochemical and cell-level biological properties of the polymer-DNA complexes that are relevant to gene delivery applications. The ABC-type triblock copolymer used in this study consists of (A) PEG, (B) hydrophobic poly( n-butyl acrylate) (PnBA), and (C) cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) component polymers. The properties of the triblock copolymer/DNA complexes are compared with those of two other more conventional DNA carriers derived, respectively, using a PDMAEMA homopolymer and a PEG-PDMAEMA diblock copolymer that had comparable molecular weights for individual blocks. In aqueous solution, the PEG-PnBA-PDMAEMA polymer forms positively charged spherical micelles. The electrostatic complexation of these micelles with plasmid DNA molecules results in the formation of stable small-sized DNA particles that are coated with a micelle monolayer, as confirmed by agarose gel electrophoresis, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). Proton nuclear magnetic resonance ( (1)H NMR) spectroscopy measurements indicate that the whole micelle-DNA assembly (named "micelleplex" for convenience) is shielded predominantly by the PEG chains. DLS and optical microscopy imaging measurements indicate that compared with PDMAEMA-DNA polyplexes, the micelleplexes have a significantly lower tendency to aggregate under physiological salt concentrations and show reduced interactions with negatively charged components in serum such as albumin and erythrocytes. While the micelleplexes are comparable to the PEG-PDMAEMA-based DNA polyplexes in terms of their stability against aggregation under high salt concentrations and in the presence of the albumin protein, they have a slightly higher tendency to interact with erythrocytes than the diblock copolymer polyplexes. Agarose gel electrophoresis measurements indicate that relative to the PEG-PDMAEMA polyplexes, the micelleplexes provide better protection of the encapsulated DNA from enzymatic degradation and also exhibit greater stability against disintegration induced by polyanionic additives; in these respects, the PDMAEMA homopolymer-based polyplexes show the best performance. In vitro studies in HeLa cells indicate that the PDMAEMA polyplexes show the highest gene transfection efficiency among the three different gene delivery systems. Between the micelleplexes and the PEG-PDMAEMA polyplexes, a higher gene transfection efficiency is observed with the latter system. All three formulations show comparable levels of cytotoxicity in HeLa cells.  相似文献   

16.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

17.
Shim WS  Kim SW  Lee DS 《Biomacromolecules》2006,7(6):1935-1941
Novel pH- and temperature-sensitive biodegradable poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol) (PCLA-PEG) block copolymers were synthesized with oligomeric sulfamethazine (OSM) end groups (OSM-PCLA-PEG-PCLA-OSM). Aqueous solutions of these block copolymers have shown sol-gel transition behavior upon both temperature and pH changes under physiological conditions (37 degrees C, pH 7.4). The sol-gel transition of these block copolymer solutions was fine-tuned by controlling the PEG length, the hydrophobic to hydrophilic block ratio (PCLA/PEG), and the molecular weight of the sulfamethazine oligomer. Since changes in temperature do not induce gel formation in this pH- and temperature-sensitive block copolymer solution, this hydrogel can be employed as an injectable carrier using a long guide catheter into the body. In addition, the pH of the block copolymer solution showed no change following PCLA degradation over 1 month, and no indication of gel collapse was observed on addition of buffer solution. As such, these properties make the OSM-PCLA-PEG-PCLA-OSM hydrogel an ideal candidate for use as an injectable carrier for certain protein-based drugs known to denature in low-pH environments.  相似文献   

18.
In this study, we examine the molecular and cellular interactions that underpin efficient internalization and utilization of polyethylenimine (PEI):DNA complexes (polyplexes) by Chinese Hamster Ovary (CHO) cells. Cell surface polyplex binding and internalization was a biphasic process, consisting of an initial rapid Phase (I), lasting approximately 15 min, followed by a slower second Phase (II), saturating at approximately 240 min post transfection. The second Phase accounted for the majority (60–70%) of polyplex internalization. While cell surface heparan sulphate proteoglycans (HSPGs) were rapidly cointernalized with polyplexes during Phase I, cell surface polyplex binding was not dependent on HSPGs. However, Phase II polyplex internalization and HSPG regeneration onto the surface of trypsinized cells occurred at similar rates, suggesting that the rate of recycling of HSPG‐containing membrane to the plasma membrane limits Phase II internalization rate. Under optimal transfection conditions, polyplexes had a near neutral surface charge (zeta potential) and cell surface binding was dependent on hydrophobic interactions, being significantly inhibited by both chemical sequestration of cholesterol from the plasma membrane and addition of nonionic surfactant. Induced alterations in polyplex zeta potential, using ferric (III) citrate to decrease surface charge and varying PEI:DNA ratio to increase surface charge, served to inhibit polyplex binding or reduce secreted alkaline phosphatase reporter expression and cell viability, respectively. To increase polyplex hydrophobicity and internalization an alkylated derivative of PEI, propyl‐PEI, was chemically synthesized. Using Design of Experiments–Response Surface Modeling to optimize the transfection process, the function of propyl‐PEI was compared to that of unmodified PEI in both parental CHO‐S cells and a subclone (Clone 4), which exhibited superior transgene expression via an increased resistance to polyplex cytotoxicity. The combination of propyl‐PEI and Clone 4 doubled the efficiency of recombinant DNA utilization and reporter protein production. These data show that for maximal efficacy, strategies to increase polyplex internalization into cells must be used in concert with strategies to offset the inherent cytotoxicity of this process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1161–1170, 2014  相似文献   

19.
To assist in overcoming the inherent instability of nucleic acid-containing polyplexes in physiological solutions, we have here set out to develop removable nanocoatings for modifying the surface of siRNA-based nanoparticles. Here, N-(2-hydroxypropyl)methacrylamide (HPMA) based copolymers containing carbonylthiazolidine-2-thione (TT) reactive groups in their side chains bound via disulfide spacers to the polymeric backbone were synthesized, and these copolymers were used to coat the surface of polyplexes formed by the self-assembly of anti-Luciferase siRNA with the polycations polyethylene imine (PEI) and poly(HPMA)-grafted poly(l-lysine) (GPL). The coating process was monitored by analyzing changes in the weight-average molecular weight (M(w)), the hydrodynamic radius (R(h)), and the zeta-potential (ζ) of the polyplexes, using both static (SLS) and dynamic (DLS) light scattering methods. The outlined methods resulted in the attachment of, on average, 28 polymer molecules to the surface of the polyplexes, forming a ~5-nm-thick hydrophilic stealth coating. Initial efforts to develop RGD-targeted coated polyplexes are also described. Atomic force microscopy (AFM) showed an angular polyplex structure and confirmed the narrow size distribution of the coated nanoparticles. The stability of the polymer-coated and uncoated polyplexes was evaluated by gel electrophoresis and by turbidity measurements, and it was found that modifying the surface of the siRNA-containing polyplexes substantially improved their stability in physiological solutions. Using polymer-coated GPL-based polyplexes containing anti-Luciferase siRNA, we finally also obtained some initial proof-of-principle for time- and concentration-dependent target-specific gene silencing, suggesting that these systems hold significant potential for further in vitro and in vivo evaluation.  相似文献   

20.
Nonviral DNA complexes show promise as alternative and attractive gene delivery vectors for treating genetic diseases. Nonviral DNA complexes are typically formed by combining DNA with various condensing/complexing agents such as lipids, polyelectrolytes, polymers, polypeptides, and surfactants in solution. DNA/poly-L-lysine polyplex formation kinetics are probed by time-resolved multiangle laser light scattering (TR-MALLS), which yields the time evolution of the supramolecular complex mass and geometric size. Primary polyplexes whose geometric size is smaller than individual DNA molecules in solution are formed very rapidly upon mixing DNA and poly-L-lysine. Over time, these primary polyplexes aggregate into larger structures whose ultimate size is determined primarily by the relative concentrations of DNA and poly-L-lysine. This final polyplex size varies with the DNA/poly-L-lysine mass ratio in a non-monotonic fashion, with the maximum polyplex size occurring at a DNA/poly-L-lysine mass ratio of approximately two to three (charge ratio near unity). The utility of TR-MALLS for monitoring the temporal evolution of DNA loading and supramolecular complex size growth (mean square radius and molar mass) throughout the DNA/poly-L-lysine polyplex formation process is demonstrated. The polyplex DNA loading and size, both geometric and molar mass, are key to understanding the transfection process and for developing optimal gene therapy vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号