首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
林浩  陈淡贞 《昆虫学报》1990,33(2):136-142
蓖麻蚕Philosamta cynthia ricini,高度提纯的中肠γ-谷氨酰转肽酶(γ-GTP)体外转肽作用表明:L-苯丙氨酸、L-甲硫氨酸,L-半胱氨酸、L-色氨酸,L-精氨酸和L-赖氨酸是最好的γ-谷氨酰的受体,而L-谷氨酸和L-谷氨酰胺(L-Gln)系该酶良好的γ-谷氨酰供体.酶对γ-谷氨酰对硝基苯胺(γ-GNA)的Km为0.13mmol/L(含L-苯丙氨酸)和0.29mmol/L(无L-苯丙氨酸).谷胱甘肽(GSH)和L-Gln与γ-GNA竞争酶的γ-谷氨酰结合部位,其抑制常数K1值分别为0.5mmol/L和1.1mmol/L.Γ-GTP催化L-Gln的酰胺键水解和转肽,其催化速率相当于对γ-GNA的38%.  相似文献   

2.
古细菌Sulfolobus acidocaldarius细胞内谷氨酰胺合成酶的表达量随着培养条件的改变有较大差异,RNA印迹表明,该差异是在mRNA水平受到调控.经DEAE-Sepharose和Sephacryl S-300两步分离酶蛋白,SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)和凝胶过滤测定分子质量,表明该酶为12个相同亚基组成,分子质量为630 ku的多聚体.该酶的最佳pH为7.3;对羟胺、谷氨酰胺、ADP和Mn2+的Km值分别为3.5 mmol/L、1.3 mmol/L、0.15 mmol/L和0.24 mmol/L;其γ-谷氨酰转移酶活性和生物合成酶活性的最佳温度均为90℃.Arrhenius曲线表明,γ-谷氨酰转移酶的活化能为47 kJ/(mol*K),生物合成酶的活化能分别为29 kJ/(mol*K)(40~75℃)和10 kJ/(mol*K)(55~90℃).对该酶的抑制剂研究发现,与其他来源的谷氨酰胺合成酶不同,甘氨酸、L-丙氨酸能明显抑制 S.acidocaldarius谷氨酰胺合成酶的活性,而常规的抑制剂如L-色氨酸、L-组氨酸、5′-AMP却没有抑制作用,甘氨酸、L-丙氨酸的抑制作用为竞争性抑制,推断该酶的活性调节与绝大多数革兰氏阳性菌一样不受腺甘酰化的影响.  相似文献   

3.
古细菌Sulfolobus acidocaldarius细胞内谷氨酰胺合成酶的表达量随着培养条件的改变有较大差异,RNA印迹表明,该差异是在mRNA水平受到调控.经DEAE-Sepharose和Sephacryl S-300两步分离酶蛋白,SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)和凝胶过滤测定分子质量,表明该酶为12个相同亚基组成,分子质量为630 ku的多聚体.该酶的最佳pH为7.3;对羟胺、谷氨酰胺、ADP和Mn2+Km值分别为3.5 mmol/L、1.3 mmol/L、0.15 mmol/L和0.24 mmol/L;其γ-谷氨酰转移酶活性和生物合成酶活性的最佳温度均为90℃.Arrhenius曲线表明,γ-谷氨酰转移酶的活化能为47 kJ/(mol·K),生物合成酶的活化能分别为29 kJ/(mol·K)(40~75℃)和10 kJ/(mol·K)(55~90℃).对该酶的抑制剂研究发现,与其他来源的谷氨酰胺合成酶不同,甘氨酸、L-丙氨酸能明显抑制 S.acidocaldarius谷氨酰胺合成酶的活性,而常规的抑制剂如L-色氨酸、L-组氨酸、5′-AMP却没有抑制作用,甘氨酸、L-丙氨酸的抑制作用为竞争性抑制,推断该酶的活性调节与绝大多数革兰氏阳性菌一样不受腺甘酰化的影响.  相似文献   

4.
【目的】以重组大肠杆菌表达的枯草芽孢杆菌(Bacillus subtilis)L-异亮氨酸双加氧酶(L-isoleucine dioxygenase,IDO)为研究对象,考察其催化L-异亮氨酸(L-Ile)羟基化反应的影响因素,构建IDO催化合成羟基氨基酸的反应体系。【方法】通过Ni-NTA亲和层析法从重组大肠杆菌(Escherichia coli)BL21/p ET28a-ido中纯化获得重组IDO,以L-Ile为底物,考察重组IDO催化羟基化反应的影响因素,并进一步针对耦联反应优化α-酮戊二酸(α-KG)在重组IDO酶促转化体系中的添加浓度。【结果】基于重组IDO催化L-Ile羟基化的活性测定,计算该酶Km为0.247 mmol/L,kcat为1.260 s-1,kcat/Km为5.101 L/(mmol·s),与其他同源酶动力学参数比较分析表明,重组IDO的底物亲和性及催化效率较高。重组IDO催化反应的最适温度为20°C、最适p H为7.0;在35°C以下较为稳定;反应体系中Fe2+最适浓度为1 mmol/L。重组IDO可催化不同L-氨基酸反应,对L-异亮氨酸、L-正亮氨酸、L-甲硫氨酸的活性较高。通过优化α-KG浓度,反应体系中添加30 mmol/Lα-KG时,可将底物浓度提高至70 mmol/L,产物4-羟基异亮氨酸(4-HIL)的摩尔产率达66.20%,表明α-KG作为反应耦联辅因子,其浓度对重组IDO催化L-Ile羟基化具有显著影响。【结论】重组IDO的底物亲和性、催化效率、最适催化条件、稳定性等基本性质有利于催化L-Ile羟基化反应。在其催化反应体系中,α-KG作为反应耦联辅因子,对酶促转化效果影响显著。研究结果为4-HIL及其他羟基氨基酸的酶促转化提供了研究基础。  相似文献   

5.
对头状轮生链霉菌(Streptoverticillium caespitosus)芳香氨基酸合成途径的研究表明,第一个酶即3—脱氧—α—阿拉伯庚酮糖-7-磷酸(DAHP)合成酶无同工酶,不被L-色氨酸阻遏,比活力可被硝酸盐促进。L-色氨酸强烈地反馈抑制此酶,L-酪氨酸和L-苯丙氨酸无作用。L-色氨酸的反馈抑制对磷酸烯醇式丙酮酸(PEP)是非竞争性的,K_I为373μmol/L。酶对PEP和4-磷酸亦藓糖(E4P)的K_m值分别为50和100μmol/L。PEP和C02+对酶有稳定作用。邻氨基苯甲酸合成酶活力可被1mmol/L L-色氨酸完全抑制,此酶也受L-色氨酸的阻遏,但是色氨酸支路上其余4个酶不被阻遏。分支酸变位酶被L-酪氨酸抑制。L-苯丙氨酸抑制预苯酸脱水酶,并更强地抑制预苯酸脱氢酶。  相似文献   

6.
α-氨基酸酯酰基转移酶(α-amino acid ester acyltransferase,AET)能够催化底物L-丙氨酸甲酯盐酸盐、L-谷氨酰胺合成L-丙氨酰-L-谷氨酰胺(L-alanyl-L-glutamine,丙谷二肽)。利用重组大肠杆菌saet-QC01表达α-氨基酸酯酰基转移酶,对其表达条件进行了优化,通过Ni-NTA亲和层析法分离纯化重组蛋白,并对其酶学性质、催化应用进行了研究。适合酶表达的诱导条件:温度20℃,诱导阶段(OD_(600)=2.0-2.5),IPTG浓度0.6 mmol/L,诱导时间12 h。α-氨基酸酯酰基转移酶的最适反应温度27℃,最适pH 8.5,在pH 7.0-8.0很稳定,在酸性条件下相对稳定,低浓度的Co~(2+)、低浓度的EDTA对酶活有促进作用。在底物浓度丙氨酸甲酯盐酸盐600 mmol/L、谷氨酰胺480 mmol/L,丙谷二肽的产量达到78.2 g/L,生产速率达到1.955 g/(L·min),转化率达到75.0%。α-氨基酸酯酰基转移酶具有良好的酸碱耐受性,催化效率高的优良特性,在工业生产中具有较好的应用潜力。  相似文献   

7.
为研究金属离子对天冬氨酸酶基因工程菌催化合成L-天冬氨酸的影响,以富马酸为底物,分别添加K~+、Mg~(2+)、Mn~(2+)、Ca~(2+)四种金属离子,利用天冬氨酸酶基因工程菌催化合成L-天冬氨酸。结果表明,K+浓度0~2.5 mmol/L时,对L-天冬氨酸的合成没有影响,K+浓度超过2.5 mmol/L时会抑制L-天冬氨酸的合成;Mg~(2+)、Mn~(2+)、Ca~(2+)对L-天冬氨酸合成量影响均呈现先促进后抑制,L-天冬氨酸合成量达到高峰时,Mg~(2+)、Mn~(2+)、Ca~(2+)浓度分别是10 mmol/L、8 mmol/L和11 mmol/L;与对照相比Mn~(2+)促进作用最强,L-天冬氨酸合成量增幅为192.0%。本研究结果可为L-天冬氨酸的工业化生产提供参考。  相似文献   

8.
粘红酵母产L-苯丙氨酸解氨酶发酵培养基的优化   总被引:5,自引:0,他引:5  
通过单因子和正交试验 ,对粘红酵母产 L -苯丙氨酸解氨酶 ( PAL )培养基进行优化 ,L-苯丙氨酸的积累浓度可以从 2 .0 g/1 0 0 ml提高到 3 .3 g/1 0 0 ml,最终得到了 L-苯丙氨酸解氨酶发酵的最适条件  相似文献   

9.
谷氨酸脱羧酶,一种磷酸吡哆醛(PLP)依赖性酶,能专一、不可逆地催化L-谷氨酸脱羧得到γ-氨基丁酸(GABA)。构建了产Lactobacillus brevis WJH3谷氨酸脱羧酶重组大肠杆菌E.coli BL21(DE3)/p ET-24a-gad,以此作为菌种进行摇瓶发酵诱导培养,发酵过程中一次性添加0.05 mmol/L PLP培养24 h,破壁上清酶活达81.7 U/m L,是不添加PLP对照酶活的1.8倍。对酶转化L-谷氨酸钠生成GABA反应条件进行了优化,结果表明,在转化体系不添加PLP的情况下,底物谷氨酸钠浓度为250 g/L,反应初始p H5.0,温度37℃,加酶量60 U/g底物,转速200 r/min,在此条件下反应18 h,GABA转化率达到100%,为γ-氨基丁酸的工业化生产奠定基础。  相似文献   

10.
[目的]实现重组大肠杆菌高效合成γ-氨基丁酸(γ-aminobutyric acid,GABA)。[方法]构建表达谷氨酸脱羧酶的基因工程菌Escherichia coli p ET-GAD,对催化工艺进行初步优化,实现高效催化L-谷氨酸脱羧反应合成GABA。[结果]在谷氨酸脱羧酶的表达过程中,维生素B6盐酸吡哆醇(PN)可以替代5-磷酸吡哆醛(PLP)作为辅酶补给,提高工程菌E. coli p ET-GAD的催化活力。在50 m L反应体系中,重组细胞浓度为8 mg/m L,底物浓度为200 mmol/L,在35℃、p H 4. 4条件下反应2 h,L-谷氨酸的转化率 98%。为了提高GABA的生产效率,采用谷氨酸/谷氨酸钠分批补料方式控制反应过程中的p H值,GABA的最终浓度达到247 g/L。[结论]重组大肠杆菌可以高效催化合成γ-氨基丁酸,为基因工程菌工业化制备GABA提供实验依据。  相似文献   

11.
S-腺苷甲硫氨酸合成酶反应条件的优化   总被引:3,自引:0,他引:3  
优化了重组毕赤酵母表达的S-腺苷甲硫氨酸合成酶催化L-甲硫氨酸(Met)和ATP合成 S-腺苷甲硫氨酸的条件,确定了该酶的最适酶活力检测条件为20mmol/L的L -Met,26mmol/ L的ATP,52mmol/L的MgCl2,300mmol/L的KCl,8mmol/L的还原型谷胱甘肽,100mmol/ L的Tris,反应液pH 8.5,35°C反应 1h,比活力达到23.84U/mg.该酶还可以催化以DL-Met代替L-Met为底物的S-腺苷甲硫氨酸合成反应,以降低生产成本.  相似文献   

12.
利用重组E.coli产天冬氨酸酶和天冬氨酸转氨酶催化生产L-4-氧苯丙氨酸的工艺。实验结果表明最佳转化条件为-37℃,pH值4.5—8.5,菌体与酮酸的质量浓度比为1.5,CTAB的质量分数为0.04%,酮酸的质量浓度11.28g/L,富马酸铵与酮酸的摩尔比为3.0:1.0,添加1mmol/L的Fe^2+,L-天冬氨酸与酮酸的摩尔比为0.4:1。在最适条件下,经过14h酶转化反应达到平衡,酮酸转化率可达到95%以上,L-4-氟苯丙氨酸得率也可达到80%以上。此法原料简单易得,为L-4-氟苯丙氨酸的制备提供了一种新方法:  相似文献   

13.
L-脯氨酸-4-羟化酶(L-Proline-4-hydroxylase,P4H)是依赖α-酮戊二酸(α-KG)和Fe2+的双加氧酶成员之一,在反式-4-羟基-L-脯氨酸(trans-4-hydroxy-L-proline,t-4Hyp)等重要手性化合物的生物合成中发挥关键作用。本研究构建了来源于Bradyrhizobium japonicum USDA 6的P4H重组大肠杆菌Escherichia coli BL21(DE3)/p ET-28b-p4h BJ,SDS-PAGE和酶活检测结果表明,该菌株具有表达可溶性P4H和催化合成t-4Hyp的能力。通过优化,确定了该重组菌全细胞催化合成t-4Hyp较优的反应体系和条件:10 m L p H 6.5 80 mmol/LMES缓冲液、9 mmol/L L-Pro,6 mmol/L L-抗坏血酸,6 mmol/Lα-KG,0.8 mmol/L Fe SO4·7H2O,反应温度为35℃;在20 g/L湿细胞的催化反应中,t-4Hyp的合成量达到34.86 mg/L,比优化前(17.53 mg/L)提高了98.86%。该工作为进一步利用P4H生物催化法合成t-4Hyp奠定了一定的技术基础。  相似文献   

14.
以2年生丹参离体根为材料,研究了反应液pH、反应时间和材料预培养时间以及苯丙氨酸、肉桂酸和阿魏酸溶液处理对根中苯丙氨酸解氨酶(PAL)和多酚氧化酶(PPO)活性的影响.结果表明:(1)PPO和PAL的最适反应pH分别为6.0和8.8,反应时间分别为30 min和60 min,最适预培养时间为10~12 h.(2)苯丙氨酸处理能抑制PAL活性,且在0.062 5 mmol·L-1时抑制作用最大,但随浓度增加无规律性变化;浓度低于1.0 mmol·L-1的苯丙氨酸处理能提高PPO的活性,且在0.062 5 mmol·L-1时促进作用最强.(3)不同浓度肉桂酸均能抑制PAL活性,并在0.125 mmol·L-1时抑制作用最大,且低浓度(≤0.125 mmol·L-1)的影响比高浓度(≥0.25 mmol·L-1)更大;低浓度肉桂酸(≤0.25 mmol·L-1)处理能提高PPO的活性并在0.25 mmol·L-1时达最大值,而在0.25~2.0 mmol·L-1浓度范围内肉桂酸对PPO活性的抑制作用随浓度的升高而增强.(4)阿魏酸对PAL表现出产物反馈抑制作用,并在0.125 mmol·L-1时抑制作用最大,但对PPO的活性有促进作用,且在0.5 mmol·L-1时PPO活性最高.可见,离体丹参根的苯丙氨酸解氨酶和多酚氧化酶活性测定有其适宜的pH、反应时间和与培养时间,苯丙氨酸、肉桂酸和阿魏酸溶液对2种酶活性的影响不同且浓度间有差异.  相似文献   

15.
针对γ-谷氨酰转肽酶(GGT)p H耐受性差的缺陷,首先以硅烷化改性的介孔氧化钛晶须(s MTw)为载体对重组枯草芽胞杆菌GGT进行固定化,再以p H 8.0~10.5的载体两性电解质Pharmalyte(CA,p H 8.0~10.5)对其进行后修饰,得到固定化酶s MTw-GGT-CA。结果发现:s MTw-GGT-CA的p H耐受性较游离酶明显提高,可在p H 6.0~11.0范围内保持稳定的催化活性。同时,s MTw-GGT-CA的热稳定性也较游离酶有所提高,其最适作用温度为50℃左右,热失活反应活化能Ed为49.88 k J/mol。s MTw-GGT-CA对γ-谷氨酰对硝基苯胺(Gp NA)的亲和力常数Km为0.579 mmol/L,与游离酶相近。  相似文献   

16.
【目的】γ-丁基甜菜碱羟化酶是生物体内合成L-肉碱的关键酶。从假单胞菌(Pseudomonas sp.)L-1中克隆γ-丁基甜菜碱羟化酶基因,实现其在大肠杆菌(Escherichia coli)中的高效表达,并对表达产物进行酶学性质分析,为生物转化生产L-肉碱奠定基础。【方法】通过PCR克隆γ-丁基甜菜碱羟化酶基因,并将其开放阅读框(ORF)克隆至融合表达载体pET-15b;表达产物经His.Bind Resin纯化后对BBH进行酶学性质及三维空间结构分析;并以静止细胞进行L-肉碱的转化。【结果】成功地克隆了一个γ-丁基甜菜碱羟化酶基因bbh(GenBank:JQ250036),并实现了其在E.coli中的高效表达。融合蛋白以同源二聚体的形式存在,单个亚基的分子量约46.5 kDa,最适反应温度为30℃,最适反应pH为7.5。该酶在45℃以下稳定。在pH6.0时该酶有最高的pH稳定性。以表达bbh基因的重组大肠杆菌静止细胞转化L-肉碱,L-肉碱产量可达12.7mmol/L。【结论】Pseudomonas sp.L-1γ-丁基甜菜碱羟化酶与现有报道的bbh基因有较大的差异。由该基因表达的γ-丁基甜菜碱羟化酶能有效地转化γ-丁基甜菜碱生成L-肉碱。本研究不仅丰富了γ-丁基甜菜碱羟化酶基因资源,而且为L-肉碱的生物转化提供了一种新的转化方案。  相似文献   

17.
大肠杆菌中表达的枯草杆菌5-氨基酮戊酸脱水酶(5-aminolevulinate dehydratase, ALAD),其N端含有组氨酸标签,Ni-NTA 一步纯化至均一.纯化的酶比活为3.6 U/mg蛋白,酶的最适pH为8.0~10.0,Km为0.95 mmol,Vmax为16.7 mmol/h,在55 ℃温浴10 min,酶活保留85 %,2 mmol/L的K+、Zn2+、Mg2+、Li+、Fe3+和Mn2+提高酶活,2 mmol/L的Co2+和Ca2+对酶活没有显著影响,2 mmol/L的Cu2+和1 mmol/L的Hg2+完全抑制酶活.在2 mmol/L的EDTA存在下酶活性丧失,表明酶催化依赖金属离子.100 mmol/L的酮戊酸抑制酶活约50 %.10 mmol/L的2-巯基乙醇时提高酶活3倍,而100 mmol/L的二硫苏糖醇几乎完全抑制酶活.氨基酸修饰表明赖氨酸和半胱氨酸残基可能是酶催化必需的,组氨酸和丝氨酸残基对酶催化不起关键作用.  相似文献   

18.
对γ-谷氨酰转肽酶酶法制备L-茶氨酸的工艺进行优化。通过恒速补料的策略,以200 mmol/L L-谷氨酰胺和2 mol/L乙胺盐酸盐作为初始底物,37℃、p H10.0条件下反应,每2 h补加100 mmol L-谷氨酰胺,反应14 h,最终L-谷氨酰胺底物总浓度为900 mmol/L,L-茶氨酸的生成量达到573.2 mmol/L,转化率达到63.7%,生产强度为40.9 mmol/(h·L)。采用变速流加的工艺,以同样的初始条件进行反应,每2 h补加L-谷氨酰胺至初始浓度200 mmol/L,反应15 h,最终L-谷氨酰胺总浓度为600 mmol/L,L-茶氨酸的生成量达到445.8 mmol/L,转化率为74.3%,生产强度为29.7 mmol/(h·L)。  相似文献   

19.
3-氰基吡啶水合酶的反应条件及影响因子   总被引:1,自引:0,他引:1  
研究了芳腈水合酶催化水合3-氰基吡啶生成尼克酰胺的反应条件及影响因子.酶反应的最适pH为8.0,最适温度为25℃.酶在pH8.5于25℃保温4小时或在25—30℃于pH8.0保温3小时是稳定的.反应液中加入Fe~(3 )(1.5 mmol/L)可使酶活力增加 50%,而加入NH_4~ (300 mmol/L)则使酶活降低了67%.Ag~ 和 Hg(2 )”强烈地抑制酶反应活性,在浓度均为 5mmol/L时,抑制率分别为99.7%和100%.NaCN(50 mmol/L)和苯甲腈(100 mmol/L)对酶活性的抑制率分别为78%和85%.该酶作用于 3-氰基吡啶的Km为62.5 mmol/L,V_(max)为85.8 μmol·min~(-1)·mg~(-1).  相似文献   

20.
考察了外源添加中间代谢产物、维生素B1和硫酸镁对大肠杆菌发酵产L-苯丙氨酸的影响,结果表明,添加1g/L柠檬酸三钠、1g/Lα-酮戊二酸、150mg/L维生素B1及3g/L硫酸镁均对L-苯丙氨酸的合成有利。根据构建的大肠杆菌合成L-苯丙氨酸的生化反应网络,利用代谢通量分析其原因。结果表明,这些物质的添加均可以调节G6P和PEP节点处的代谢通量分布,为L-苯丙氨酸的合成提供更多的前体物质赤藓糖四磷酸(E4P)、磷酸烯醇式丙酮酸(PEP)和还原力NADPH。通过补料分批发酵实验得出,优化后菌体对总葡萄糖的消耗提高了24.49%,菌体终浓度提高了23.50%,L-苯丙氨酸的终浓度提高了62.87%,L-苯丙氨酸的收率提高了30.88%,乙酸的合成降低了56.51%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号