首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
嗜热菌中,蛋白质存在Ala替换Gly以及Arg替换Lys的趋势。为了提高紫色色杆菌来源的苯丙氨酸羟化酶的热稳定性,将该酶中所有Gly突变成Ala,Lys突变成Arg,筛选获得热稳定性提高的突变体,并进行组合突变,对突变酶的酶学性质进行研究。结果表明,突变酶K94R和G221A在50℃的半衰期分别为26.2 min、16.8 min,比原始酶(9.0 min)分别提高了1.9倍、0.9倍,同时组合突变酶K94R/G221A在50℃处理1 h后仍保留65.6%的酶活,比原始酶(8.6%)高出6.6倍。圆二色谱结果显示原始酶和突变酶K94R、G221A及K94R/G221A的T_m值分别为51.5℃、53.8℃、53.1℃和54.8℃。蛋白三维结构模拟推测突变体热稳定性提高机理为:突变体K94R中Arg94与Ile95之间形成额外氢键,稳定其所在的柔性区域;突变体G221A中Ala221与Leu281产生疏水作用,稳定酶分子C-端柔性区。该研究结果为蛋白质热稳定性改造提供了参考,也为苯丙氨酸羟化酶在功能性食品领域的应用奠定了基础。  相似文献   

2.
旨在获得高温活性和热稳定性提高的α-淀粉酶。通过向α-淀粉酶Apk A中引入目前已知的最稳定的α-淀粉酶PFA的Zn~(2+)结合位点,获得Zn~(2+)结合位点突变体ApkAds K152H/A166C。酶学性质分析表明,ApkAds K152H/A166C的高温活性和热稳定性明显提高,最适反应温度由90℃提高至100℃,对应的酶比活力为5 201.08 U/mg。ApkAds K152H/A166C于90℃的半衰期由5 h延长至10 h,于100℃的半衰期由7.5 min延长至80 min。重组α-淀粉酶中Zn~(2+)含量测定结果显示ApkAds K152H/A166C结合了一个Zn~(2+)。结果表明,向ApkA中引入Zn~(2+)结合位点有利于提高其高温活性和热稳定性。  相似文献   

3.
向玉  张萌  许菲 《生物工程学报》2020,36(8):1556-1567
提高酶的热稳定性是生物催化领域的热点和难点,计算机辅助的理性设计相比于传统的定向进化更加高效,在酶工程领域中的应用越来越广泛和深入。文中以枯草芽孢杆菌脂肪酶A为模式蛋白,首先,利用Rosetta-VIP计算设计对酶的结构空腔进行分析,选择了16个有利于结构空腔填充(ΔΔE0)的单点突变,并以突变位点的溶剂可及表面积和进化保守性为二次筛选依据,测定了其热稳定性与酶活性。有6个单点突变体(F17A、V74I、L114P、I135V、M137A、I157L)的热稳定性得到了提高,其中Tm值最大提高3.18℃。结果表明,单点突变体满足ΔΔE越低、蛋白溶剂可及表面积减少且符合序列保守性,则得到保留原有酶活力的正向突变的可能性越大。此外,将热稳定性提高的6个单点突变进行迭代组合突变,两点组合突变体的Tm最大提高4.04℃,三点组合突变体的Tm最大提高5.13℃,四点组合突变体的Tm提高了7.30℃,六点组合突变体的Tm提高了7.43℃。因此,基于酶的分子结构的空腔分析、溶剂可及表面积及氨基酸序列保守性计算的多重虚拟筛选方法,可有效提高酶的热稳定性。  相似文献   

4.
以磷酸吡哆醛为辅酶的谷氨酸脱羧酶(Glutamate decarboxylase,GAD),能专一、不可逆地催化L-谷氨酸脱去α-羧基生成γ-氨基丁酸。为了提高GAD热稳定性为目标,本研究通过与嗜热古细菌Thermococcus kodakarensis中GAD氨基酸序列的比对及引入脯氨酸策略,最终在短乳杆菌Lactobacillus brevis CGMCC No.1306的GAD突变体中筛选得到热稳定性提高的突变酶G364P。结果显示,突变酶G364P在55℃的半衰期以及半失活温度分别比野生酶提高19.4 min和5.3℃,并且突变酶G364P的催化效率与野生酶相比没有明显变化。此外,利用分子动力学模拟来验证突变对蛋白质热稳定性的影响,突变酶G364P的均方根偏差(Rootmeansquare deviation,RMSD)以及含G364的loop区域均方根涨落(Root mean square fluctuation,RMSF)均比野生酶低,引入脯氨酸增加了364位氨基酸与相邻氨基酸的疏水相互作用。文中通过引入脯氨酸成功提高了L. brevis中GAD的热稳定性,同时也为其他酶热稳定性的理性设计提供了方法学指导。  相似文献   

5.
提高中温α-淀粉酶生产菌株的发酵温度,对减少冷却水消耗降低生产成本有重要意义。本文利用基因删除技术删除了地衣芽孢杆菌CBBD302菌株α-淀粉酶的编码基因(amy L)获得突变株D402。将表达解淀粉芽孢杆菌中温α-淀粉酶基因Ba A的重组质粒p HY-WZX-Ba A转化D402,获得表达中温α-淀粉酶的重组地衣芽孢杆菌D402/p HY-WZX-Ba A。摇瓶发酵实验显示,重组菌最适发酵温度为42℃,比原生产菌株提高8℃,最高产酶水平达到301 U/m L。30 L发酵罐发酵试验,78 h达到最高酶活531 U/m L。重组酶的最适作用温度为60℃,最适作用p H 6.5,在90℃保温20 min可以完全失活,保持了中温α-淀粉酶既能在淀粉糊化温度下保持稳定又便于灭酶的优良性能。  相似文献   

6.
扩展青霉脂肪酶K56R叠加突变对热稳定性的影响   总被引:1,自引:0,他引:1  
目的:扩展青霉脂肪酶随机突变体ep8是一株热稳定性比野生型有所提高的突变体.获得热稳定性提高的优良菌株.方法:在ep8的基础上利用重叠延伸PCR构建叠加突变重组质粒pPIC3.5K-ep8一K56R,将该质粒电转毕赤酵母(Pichia paaoris)GS115进行异源表达.结果:该叠加突变脂肪酶在毕赤酵母中获得了活性表达.15%SDS-PACE结果分析表明突变脂肪酶PEL-ep8-K56R-GS分子量与野生型PEL-GS一致,约为28kDa.叠加突变脂肪酶在37℃时酶活为852U/mL、野生型为760u/mL、随机突变体为824u/mL,叠加突变体酶活相比野生型提高了21.1%,相比随机突变体提高了3.4%.热稳定性分析数据表明叠加突变脂肪酶Tm值为40.1℃、野生型为38.7℃、随机突变体为39.9℃,Tm值相比野生型提高了1.4℃,相比随机突变体提高了0.2℃.  相似文献   

7.
利用生物信息学分析黑曲霉木聚糖酶Xyn ZF-2,选择α-螺旋178位点、170位点和180位点氨基酸进行定点突变(K178M,S170F,G180V)获得突变木聚糖酶基因xyn MFV,构建重组表达载体转化大肠杆菌E.coli BL21(DE3)诱导表达。酶学性质分析对比发现,突变酶最适温度(50℃)比原酶(40℃)提高了10℃;40℃条件下保温1 h突变酶Xyn MFV相对酶活力下降到热处理前的56.0%,原酶Xyn ZF-2下降到42.0%;45℃时突变酶Xyn MFV的半衰期t_(1/2)为21 min,与原酶Xyn ZF-2(t_(1/2)=7 min)相比较提高了14 min。结果表明,K178M、S170F、G180V突变木聚糖酶可以提高Xyn ZF-2最适温度和热稳定性。  相似文献   

8.
【背景】木聚糖是生物圈中仅次于纤维素的第二大多糖,其结构复杂,完全降解需要多种木聚糖酶协同作用。β-1,4-内切木聚糖酶是木聚糖主链水解过程中最关键的酶,已广泛应用于饲料、造纸、能源、食品和医药等行业。但在实际应用中,由于真菌木聚糖酶的热稳定性较差,限制了其在工业中的应用。【目的】提高来源于黑曲霉(Aspergillusniger)的β-1,4-内切木聚糖酶(xynB)热稳定性。【方法】采用氨基酸虚拟突变技术对xynB定向引入一个N-糖基化位点,将虚拟突变后筛选获得的候选突变体和野生型在毕赤酵母SMD1168中表达,并对纯化后的野生型和突变体酶进行酶学性质和稳定性分析。【结果】经虚拟突变和筛选获得5个候选突变体,在毕赤酵母SMD1168中成功表达了4个突变体,其中3个突变体发生了糖基化。突变体和野生型酶均表现出宽范围的酸碱耐受性,且突变体xynB~(A92N/D94T)在pH4.0–11.0条件下的稳定性明显优于野生型;糖基化突变体xynB~(A92N/D94T)、xynB~(G66N/A68T)和xynB~(G66F/D67N/G69T)在温度为60–80°C时热稳定性明显高于野生型,xynB~(G66N/A68T)在80°C保温30 min后的残留酶活比野生型提高了约30%。【结论】本研究方法可为其他来源木聚糖酶和其他工业酶的热稳定分子改造提供参考。  相似文献   

9.
纤维素水解成为葡萄糖需要一系列纤维素酶的作用,其中β-葡萄糖苷酶(β-glucosidases)起着至关重要的作用。来自于培菌白蚁中肠的β-葡萄糖苷酶(MbmgBG1)具有较高的葡萄糖耐受性(1.5 mol/L的葡萄糖,保持60%以上的酶活力),但是,酶活力低和热稳定性差限制了β-葡萄糖苷酶(MbmgBG1)在食品以及工业领域中的应用。因此通过对保守氨基酸附近的非保守氨基酸定点突变,获得点突变体(F167L、T176C、E347I、R354K、N393G和V425M),其中突变体F167L、R354K的比活力(底物pNPG)比MbmgBG1分别高出约2倍和4倍。突变体的K_(cat)/K_m值比野生型大,反映了突变体对底物的亲和力以及催化能力比MbmgBG1强。当酶活力保留60%以上时,MbmgBG1所耐受的葡萄糖浓度为1.5 mol/L,而F167L为2.0 mol/L,R354K为3.0 mol/L。这些特性的增强表明,对活性中心附近保守区域内的非保守氨基酸突变,可以较大程度地影响活性,因此需要更深入地研究β-葡萄糖苷酶的活性中心位点,进行改造以提高催化效率。  相似文献   

10.
通过随机突变策略建立了耐高温α-淀粉酶(AMYF)的突变库,为了筛选有益的突变体建立了一种快速的基于微量滴定板上的胞内α-淀粉酶的筛选体系。为了增加胞内酶活的可比性确定了比酶活(U/ml)筛选参数(1-A660/A660pET)/A600。对此法的可靠性进行了实验分析,并得到比酶活提高50%的突变体。为了筛选此酶最适pH降低的突变体,建立了最适pH变化的筛选方法。  相似文献   

11.
谷氨酸脱羧酶(Glutamate decarboxylase,GAD)是用于催化L-谷氨酸脱羧合成γ-氨基丁酸(γ-aminobutyrate,GABA)的唯一酶,提高GAD的催化活力或热稳定性,有利于GABA的高效制备和生产。以热稳定性和活性为筛选目标,通过研究短乳杆菌GAD1407三维模拟结构的拉氏图,确定不稳定氨基酸残基位点K413,采用定点突变的方法构建该位点的突变体,并测定野生型酶和突变酶的热稳定性和活力。结果表明突变酶K413A和突变酶K413I分别在热稳定性和酶活力上获得了提高,突变酶K413A在50℃的半衰期为105 min,是野生酶的2.1倍;突变酶K413I热稳定性没有明显的提高,但其酶活力却得到了有效提高,约为野生型的1.6倍。因此,通过拉氏图提供的结构信息可为利用理性设计提高GAD活性和热稳定性提供指导。  相似文献   

12.
高温α-淀粉酶基因突变体在大肠杆菌、毕赤酵母中的表达   总被引:1,自引:0,他引:1  
对地衣芽孢杆菌(Bacillus licheniformis)高温α-淀粉酶(amyE)基因进行改造获得的基因突变体(amyEM),通过PCR扩增,将此基因分别克隆至大肠杆菌表达载体pBV220和毕赤酵母表达载体pPIC9K上,并分别转化大肠杆菌DH5α和毕赤酵母GS115感受态细胞,获得重组大肠杆菌和重组毕赤酵母。通过表达产物的酶活性检测和SDS-PAGE分析,证明突变α-淀粉酶(AmyEM)在大肠杆菌、毕赤酵母中获得有效表达。对重组大肠杆菌产生的α-淀粉酶的粗酶性质分析表明,此酶分子量约为55kDa。其最适反应温度为80℃~90℃,与野生型基因相比,其最适pH均为6.0,但不同的是突变体在pH 5.0~5.5时表现出较高的酶活力;在毕赤酵母细胞的表达产物可分泌至胞外。由于酵母可对蛋白进行糖基化,酶分子量增加到60kDa,最适pH也改变为5.5。此高温α-淀粉酶突变体所具有的在微酸性环境具有较高酶活力的性质,具有重要的潜在工业应用价值。  相似文献   

13.
陈磊  陈晟  吴敬  吴丹 《生物工程学报》2018,34(2):255-263
运用体外分子进化技术易错PCR方法,高通量筛选热稳定性提高的弯曲芽孢杆菌Bacillus flexus CCTCC2015368β-淀粉酶突变体。利用LB琼脂淀粉板显色、96-孔板DNS法测酶活和酶标仪检测等,最终筛选到了一株热稳定性显著提高的突变体D476N。野生型和突变体D476N分别纯化后,酶学性质测定表明:突变体D476N的最适pH为6.5,与野生型相比降低了0.5。突变体D476N和野生型的最适温度均为55℃,突变体D476N在55℃下的半衰期为35 min,比野生型提高了95%。突变体D476N的T_(50)值比野生型提高4℃。突变体D476N的K_m值为97.98μmol/L,是野生型(85.86μmol/L)1.14倍;突变体稳定性提高的同时,催化活力相对于野生型有略微下降。通过SWISS-MODEL同源模拟野生型和突变体D476N的三维结构,并通过PyMol软件分析,发现突变后的氨基酸残基Asn476位于蛋白质表面的loop环上,通过MOE软件计算,D476N的分子自由能(ΔG)为106.01kcal/mol,比野生酶降低10.3%,这一结果与蛋白质分子自由能和热稳定性呈负相关的理论相符。  相似文献   

14.
应用基于易错PCR随机突变的体外分子进化技术,来提高淀粉液化芽胞杆菌β-1,3-1,4-葡聚糖酶的热稳定性。利用建立的基于96微孔板高通量筛选模型,经过两轮定向进化与高通量筛选,共筛选得到3株热稳定性明显提高的突变体2-JF-01、2-JF-02和2-JF-03。将野生型β-葡聚糖酶基因和热稳定性提高的突变基因的高效表达产物经镍亲和层析柱纯化后,酶学性质测定表明突变酶2-JF-01、2-JF-02和2-JF-03的T50值分别比野生酶(53℃)提高2.2℃、5.5℃和3.5℃。突变酶2-JF-01、2-JF-02和2-JF-03在60℃下的半衰期t1/2,60℃(min)分别比野生酶(18min)提高4min、13min和17min。突变酶2-JF-01、2-JF-02和2-JF-03的Vmax值为286μmol/(mg·min)、304μmol/(mg·min)和279μmol/(mg·min),分别比野生型下降8.3%、2.6%和10.6%。突变酶2-JF-01、2-JF-02和2-JF-03的Km值分别为6.76mg/mL、6.19μmg/mL和6.84mg/mL,与野生型(6.29mg/mL)基本相同。序列分析表明,3个突变体共发生7个氨基酸替代:2-JF-01(N36S,G213R)、2-JF-02(C86R,S115I,N150G)和2-JF-03(E156V,K105R)。同源建模表明,7个氨基酸替代中5个位于蛋白质表面或表面洞穴中,42.8%的替代氨基酸是精氨酸,也表明精氨酸在提高β-1,3-1,4-葡聚糖酶热稳定性中起重要的作用。  相似文献   

15.
摘要:【目的】对土芽孢杆菌(Geobacillus sp.) ZH1的羧酸酯酶基因进行定向进化,筛选得到酶热稳定性提高的突变酶。【方法】利用易错PCR技术向羧酸酯酶基因中随机引入突变,建立酶基因突变文库,筛选获得热稳定性提高的突变体,并对突变酶进行诱导表达、纯化及部分酶学性质研究。【结果】通过筛选,获得羧酸酯酶热稳定性提高的突变菌株65。序列分析表明,突变酯酶65有2个氨基酸发生了改变,包括T113S和M160K。突变酶的三维结构模拟显示,突变T113S位于酶分子的第5个β-折叠上;突变M160K处在酶分子第5个和第6个α-螺旋之间的环结构上,位于酶分子表面,突变后的Lys160与邻近的Thr162形成一个额外氢键。在90 ℃下,突变酶65和亲本酶的半衰期分别为3.1 h 和1.9 h,表明筛选到的突变酶65比亲本酶的热稳定性好。【结论】基于易错PCR技术对Geobacillus sp.ZH1羧酸酯酶的热稳定性进行了定向进化,对改善酶的性质、扩大酯酶的应用范围,以及研究酯酶的结构与功能的关系具有重要意义。  相似文献   

16.
尿卟啉原Ⅲ甲基化酶是一种新型的红色荧光指示蛋白,但是,在大肠杆菌重组表达的SUMT水溶性相对较低,限制了它的应用范围,而且对于结合在蛋白的色素组分尚不清楚。利用定点突变产生玉米尿卟啉原Ⅲ甲基化酶L88R/L89G双突变体和L166A突变体,两种突变体分别在大肠杆菌中重组表达,Ni-NTA一步纯化。紫外可见光谱扫描和质谱分析确定从纯化的L88R/L89G双突变体蛋白分离的色素组分。L88R/L89G双突变体在大肠杆菌细胞内有酶活,而L166A突变体胞内酶活丧失。结合蛋白的主要组分为三甲基化咕啉。纯化的双突变体蛋白水溶性增加,为提高它作为荧光指示蛋白检测外源融合蛋白的水溶性打下基础。  相似文献   

17.
用双引物法对GI基因进行体外定点突变,构建了突变体Q20L和G247D。含突变基因的重组表达质粒pTKD-GIQ20L及pTKDGIG247D在E.coli K38菌株中表达。纯化的突变酶与野生型酶相比:(1) GIQ20L的最适反应温度下降5℃,热稳定性为野生型酶的78%,对底物的亲和性增强;(2) GIG247D的酶活提高约33%,最适pH下降0.6个单位,但热稳定性降低。初步分析认为,Gln 20位于α0~α1螺旋之间,其亲水侧链被Leu的疏水侧链取代后,分子表面增强的疏水作用,反而不利于蛋白质的稳定,使GIQ20L的热稳定性降低。Gly247是酶活性中心β折叠(242~247aa)的最后一个残基。引入电负性极强的Asp后,可能改变分子的静电场分布,影响了活性部位的电荷传递过程,使GIG247D酶活提高。引入的电荷,可能改变活性中心可解离基团的pKa,使其最适pH下降。另外Asp247的侧链在周围空间结构中显得过于拥挤,易与其他侧链产生排斥,由此影响到β-折叠的稳定性,接近亚基结合面的Asp247,可能进一步影响到亚基间相互作用的稳定性,最终导致酶热稳定性的降低。GI酶活和最适pH的改善更利于工业生产。  相似文献   

18.
K202A突变对扩展青霉脂肪酶热稳定性的影响   总被引:2,自引:0,他引:2  
利用易错PCR定向进化扩展青霉脂肪酶(PEL),获得了一株热稳定性有所提高的随机突变体(ep8),ep8包含有一个氨基酸的改变。为进一步提高其热稳定性,作者利用重叠延伸PCR法,以ep8基因为模板,将第202位赖氨酸突变为丙氨酸(K202A),构建表达质粒pAO815-ep8-K202A。并将其引入毕赤酵母GS115构建叠加突变体(PEL-ep8-K202A)。同时以野生型lip07为模板构建单点突变体:PEL-lip07-K202A。15% SDS-PAGE 结果分析表明突变体分子量与野生型一致,约为28KD. 表达产物热稳定性分析结果表明: 野生型(PEL)的Tm值为39.03℃,而以野生型为模板进行定点突变得到的单点突变酶(PEL-lip07-K202A),其Tm却降低了2℃,为37.08℃。叠加突变酶(PEL-ep8-K202A)的Tm为41.66℃, 比野生型酶提高2.63℃,比随机突变体ep8生产的酶(PEL-ep8)的Tm提高了1.21℃。  相似文献   

19.
为了提高青霉素G酰化酶(PGA)在酸性及有机溶剂中的稳定性,以大肠杆菌的晶体结构为模板,用软件PMODELING同源模建巨大芽孢杆菌青霉素G酰化酶的三维结构结构并且选择PGA分子表面的合适碱性氨基酸突变为丙氨酸,通过三种不同的快速PCR介导定位突变的方法,将位于PGA的α亚基21位、128位和β亚基492位、512位的赖氨酸残基分别突变为丙氨酸,获得四个突变酶Kα021A、Kα128A、Kβ492A和Kβ512A。其中Kα128A和Kβ512A保持与野生型相近的酶活力,其动力学性质如最适温度、最适pH,Km及Kcat没有明显变化;突变酶Kα021A和Kβ492A则丧失 了酶活力。上述结果表明,PGA分子表面非活性中心的赖氨酸→丙氨酸点突变使突变子的性状发生了分化,突变效应呈现出丰富的多样性。该有理设计不但可以提高酶的稳定性,而且为揭示PGA结构和功能的关系提供了一个新的研究模型。  相似文献   

20.
为探讨人载脂蛋白A-Ⅰ(apoA-Ⅰ,apolipoproteinA-Ⅰ)α螺旋不同位点的半胱氨酸突变后,对蛋白二级结构和脂质结合能力的影响,利用定点诱变技术构建apoA-Ⅰ的天然半胱氨酸突变体apoA-ⅠMilano(R173C),及其它α螺旋片段上的半胱氨酸突变体,分别为apoA-Ⅰ(S52C),apoA-Ⅰ(N74C),apoA-Ⅰ(L107C),apoA-Ⅰ(K129C),和apoA-Ⅰ(L195C).观察比较各种野生型及突变apoA-Ⅰ单体蛋白的α螺旋含量和二级结构稳定性及其脂质结合能力.结果显示,野生型apoA-Ⅰ,apoA-Ⅰ(S52C),apoA-Ⅰ(N74C),apoA-Ⅰ(L107C),apoA-Ⅰ(K129C),apoA-ⅠMilano和apoA-Ⅰ(L195C)的α螺旋含量分别为54±4%,49±4%,50±2%,51±6%,56±4%,52±3%,和54±1%,各种蛋白的α螺旋含量无显著性差异(P>0.05).野生型apoA-Ⅰ的变性标准自由能(ΔG0D)为10.5kJ/mol;apoA-Ⅰ(S52C)和apoA-ⅠMilano的ΔG0D比野生型低2.1kJ/mol;而apoA-Ⅰ(K129C)的ΔG0D比野生型apoA-Ⅰ高1.6kJ/mol.与野生型apoA-Ⅰ相比,apoA-Ⅰ(K129C)和apoA-Ⅰ(L195C)两个突变体与脂质结合能力明显下降(P<0.05),而其它半胱氨酸突变体(包括apoA-ⅠMilano)在脂质结合动力学方面与野生型apoA-Ⅰ无明显差异.以上结果提示,不同位点发生的半胱氨酸突变对apoA-Ⅰ单体蛋白的α螺旋含量无明显影响,但对蛋白的二级结构稳定性和脂质结合能力影响不尽相同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号