首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
了解云南省2009~2014年甲型H1N1流感病毒的流行趋势,研究HA和NA基因进化特征。对云南省近6年来上报的流感监测病例数据进行病原谱总结,挑选出23株甲型H1N1流感毒株进行HA及NA基因分析。利用MEGA 5.0软件对测序结果构建进化树分析基因同源性。2009~2014年云南省共监测到4次甲型H1N1流感流行高峰,核酸检测结果中甲型H1N1流感占检出总量的28.8%。测序结果显示,HA与NA基因均分为3个类群,检测到一株具有H275Y突变位点的毒株。甲型H1N1流感是导致本省流感流行的重要亚型之一,2009~2014年间分离的毒株主要有Goup1、Gourp7和Gourp6三个支系,绝大部分甲型H1N1流感毒株仍对神经氨酸酶抑制剂敏感。  相似文献   

2.
2009甲型H1N1流感病毒研究进展   总被引:1,自引:0,他引:1  
2009年3月在美国和墨西哥爆发的新型甲型H1N1流感在很短的时间内便扩散到世界多个国家,形成了流感的大流行,引起世界卫生组织和各国的高度重视。综述新型甲型H1N1流感病毒的基因组来源、目前主要的检测手段,并对预防和治疗的方法进行简单介绍。  相似文献   

3.
甲型H1N1流感病毒核酸荧光定量RT-PCR检测技术   总被引:2,自引:0,他引:2  
目的:建立基于TaqMan荧光探针技术的甲型H1N1流感病毒实时定量RT-PCR方法。方法:分析H1N1流感病毒基因特性,根据新发甲型H1N1流感病毒突变基因片段设计检测引物和TaqMan荧光探针,建立荧光定量RT-PCR检测体系,体外转录制备RNA标准品,进行特异性、敏感性、重复性及盲样检测评价实验。结果:可特异性有效检测新发甲型H1N1流感病毒核酸,与H1~H16流感病毒基因无交叉反应;对RNA标准品的检测敏感性达103拷贝/μL;重复性实验中,阳性标准品Ct值变异系数(CV)10%,阴性标准品检测结果均呈阴性;12份盲样检测结果特异性好。结论:该荧光定量RT-PCR方法可作为甲型H1N1流感防控的病原快速诊断技术。  相似文献   

4.
建立了一种基于颜色判定的简单、快速和灵敏的检测方法,即环介导逆转录等温核酸扩增技术(RT-LAMP)应用于人甲型H1N1流感病毒基因检测。该技术使用对应于人甲型H1N1流感病毒HA序列中8个基因区段的6条特异引物,在等温条件下(65℃)进行核酸扩增反应1.5h,在扩增前加入染料HNB(羟基萘酚蓝)作为反应指示剂,以HNB的颜色变化做为结果判定标准并经琼脂糖凝胶电泳验证。文中利用这种技术对不同来源及亚型的流感病毒进行了特异性分析,对体外转录的人甲型H1N1流感病毒HA基因RNA的系列稀释物进行了灵敏度分析,成功检测美国CDC提供的人甲型H1N1流感病毒标准品,利用RT-LAMP和RT-PCR同时检测了30份人甲型H1N1和26份季节性流感咽拭子标本。结果显示RT-LAMP方法特异性高,灵敏度可达到60个拷贝RNA分子水平,对临床标本的检出率与常规RT-PCR法相当,利用650nm的比色分析通过标准曲线可以实现对样品的定量。因此,基于颜色判定的环介导逆转录等温扩增方法可用于人甲型H1N1流感病毒感染的快速筛选,具有在基层疾病预防控制中心流感监测网络实验室和哨点医院推广和应用的潜力。  相似文献   

5.
自2009年3月18日墨西哥发现人感染甲型H1N1病毒疑似病例以来,一种新的猪源性H1N1型流感病毒开始在墨西哥和美国蔓延开来.并在数周内扩散到很多国家和地区.不断引起人类感染和死亡。伴随着流感疫情在全球范围内的迅速蔓延,6月初,世界卫生组织宣布把甲型H1N1流感警戒级别升至6级.甲型H1N1流感疫情已经发展成为全球性“流感大流行”。甲型H1N1流感疫情成为了全球高度关注的突发公共卫生事件。  相似文献   

6.
中国内地首例确诊甲型H1N1流感病例的实验室检测   总被引:3,自引:0,他引:3  
本实验室针对中国四川省一例输入性疑似甲型H1N1流感病例的临床咽拭子标本进行Real-time PCR和RT-PCR检测,并随后对部分基因片段进行测序,结果表明临床咽拭子标本为甲型H1N1流感病毒阳性,因此该疑似甲型H1N1流感病例成为中国内地首例确诊的甲型H1N1流感病例。  相似文献   

7.
《生物技术世界》2009,(3):83-83
近日.艾本德公司向上海市公共卫生临床中心捐赠一台荧光定量PCR仪。作为上海指定的防控甲型H1N1流感的定点医疗机构,上海市公共卫生临床中心应急检测和生物安全实验室凭借自身优势将承担甲型H1N1流感病毒的快速诊断,病毒分离鉴定等重要任务。根据WHO发布的甲型H1N1流感实验室检测指南以及国家疾病预防控制中心甲型H1N1流感病毒实验室检测技术方案,实时荧光PCR方法被用于快速有效检测新型H1N1流感病毒核酸.定量PCR仪成为不可或缺的实验设备。  相似文献   

8.
新发甲型H1N1流感病毒HA分子的变异分析   总被引:1,自引:0,他引:1  
目的:从分子进化水平上分析流感的起源及发展问题,研究目前爆发的H1N1病毒的HA分子的变异行为.方法:以GenBank公布的甲型流感H1N1病毒血凝素(hemagglutinin,HA)核酸序列和我国及世界范围内近几年来报告的H1N1流感病毒HA的核酸及氨基酸序列为研究对象,利用CLUSTAL 1.83和NetNGlyc 1.0等生物信息学软件对HA核酸和氨基酸序列进行了比对分析;将其糖基化位点、氨基酸序列和抗原决定簇与以往流感病毒进行了比较.同时,还将人源和猪源甲型H1N1流感病毒的HA氨基酸序列进行了序列比对和系统发育分析.结果:最新爆发的甲型H1N1流感病毒的HA除了在60,259,453,512位点高度保守区域与之前爆发的流感病毒一致外,在249位点新出现1个"-NTT-"的糖基化位点.发现所有的甲型病毒的氨基酸序列在8个氨基酸位点均发生改变,而8个氨基酸位点位于6个抗原抗原决定簇上.结论:糖基化位点的增加,氨基酸位点的改变导致抗原决定簇的改变,即抗原性漂移现象,都成为引起其传染性改变的重要原因.  相似文献   

9.
目的 对5种国产甲型H1N1流感病毒核酸检测试剂盒进行质量评估.方法 应用甲型H1N1流感病毒核酸国家参考品,按照各自试剂盒说明书的方法进行检测.结果 5种试剂盒在特异性、最低检出限及精密度方面均符合国家标准,不同厂家及同一厂家不同批次试剂盒之间在最低检出限及精密度方面都存在差异.结论 5种国产甲型H1N1流感病毒核酸检测试剂盒性能可靠,为此类试剂的生产研究以及临床评价提供依据.  相似文献   

10.
在2009~2010年监测年度开展甲型H1N1流感病毒学监测并进行病原学分离鉴定,以及对血凝素基因(HA)和神经氨酸酶基因(NA)特性分析,研究其基因变异情况。采集了17 126份发热患者的鼻、咽拭子标本,采用逆转录实时荧光定量RT-PCR(Real-Time RT-PCR)进行核酸检测,其中甲型H1N1流感病毒核酸检测阳性4004份,总阳性率为23.38%。对阳性标本开展病毒分离,并对分离的甲型H1N1流感病毒的HA、NA基因序列进行测序。利用DNAStar软件对序列进行同源性分析发现与WHO推荐的疫苗株相比,山东省甲型H1N1流感流行株HA、NA基因同源性分别为96.9%~99.3%和99.1%~99.6%;利用Mega 4.0软件进行基因进化分析和氨基酸进化分析发现,与WHO推荐的疫苗株相比,山东省甲型H1N1流感流行株有21个血凝素基因的氨基酸发生替换,其中11个氨基酸位点位于抗原决定簇区,一个糖基化位点发生改变;有16个神经氨酸酶基因的氨基酸发生了替换,一个糖基化位点发生改变;未发生神经氨酸酶蛋白275位H→Y的替换。结果显示山东省甲型H1N1流感暴发流行株HA基因和NA基因均具有高度同源性,HA蛋白和NA蛋白均存在不同程度的氨基酸替换,部分流行株抗原决定簇和糖基化位点发生改变,所有病毒均对达菲类药物敏感。  相似文献   

11.
Introduction of a novel influenza virus into the human population leads to the occurrence of pandemic events, such as the one caused by pandemic influenza A (H1N1) 2009 virus. The severity of infections caused by this virus in young adults was greater than that observed in patients with seasonal influenza. Fatal cases have been associated with an abnormal innate, proinflammatory immune response. A critical role for natural killer cells during the initial responses to influenza infections has been suggested. In this study, we assessed the association of killer-cell immunoglobulin-like receptors (KIRs) with disease severity by comparing KIR gene content in patients with mild and severe pandemic influenza virus infections to a control group. We found that activator (KIR3DS1 and KIR2DS5) and inhibitory (KIR2DL5) genes, encoded in group B haplotypes containing the cB01, cB03 and tB01 motifs, are associated with severe pandemic influenza A (H1N1) 2009 infections. Better understanding of how genetic variability contributes to influenza virus pathogenesis may help to the development of immune intervention strategies aiming at controlling the severity of disease.  相似文献   

12.
Although previous publications suggest the 2009 pandemic influenza A (H1N1) virus was reassorted from swine viruses of North America and Eurasia, the immediate ancestry still remains elusive due to the big evolutionary distance between the 2009 H1N1 virus and the previously isolated strains. Since the unveiling of the 2009 H1N1 influenza, great deal of interest has been drawn to influenza, consequently a large number of influenza virus sequences have been deposited into the public sequence databases. Blast analysis demonstrated that the recently submitted 2007 South Dakota avian influenza virus strains and other North American avian strains contained genetic segments very closely related to the 2009 H1N1 virus, which suggests these avian influenza viruses are very close relatives of the 2009 H1N1 virus. Phylogenetic analyses also indicate that the 2009 H1N1 viruses are associated with both avian and swine influenza viruses circulating in North America. Since the migrating wild birds are preferable to pigs as the carrier to spread the influenza viruses across vast distances, it is very likely that birds played an important role in the inter-continental evolution of the 2009 H1N1 virus. It is essential to understand the evolutionary route of the emerging influenza virus in order to find a way to prevent further emerging cases. This study suggests the close relationship between 2009 pandemic virus and the North America avian viruses and underscores enhanced surveillance of influenza in birds for understanding the evolution of the 2009 pandemic influenza.  相似文献   

13.
On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from person to person and has higher transmissibility then that of seasonal influenza viruses. In India the novel H1N1 virus infection has been reported from all over the country. A total of 68,919 samples from clinically suspected persons have been tested for influenza A H1N1 across the country and 13,330 (18.9%) of them have been found positive with 427 deaths. At the All India Institute of Medical Sciences, New Delhi India, we tested 1096 clinical samples for the presence of novel H1N1 influenza virus and seasonal influenza viruses. Of these 1096 samples, 194 samples (17.7%) were positive for novel H1N1 influenza virus and 197 samples (18%) were positive for seasonal influenza viruses. During outbreaks of emerging infectious diseases accurate and rapid diagnosis is critical for minimizing further spread through timely implementation of appropriate vaccines and antiviral treatment. Since the symptoms of novel H1N1 influenza infection are not specifi c, laboratory confi rmation of suspected cases is of prime importance.  相似文献   

14.
The last decade has seen the emergence of two new influenza A subtypes and they have become a cause of concern for the global community. These are the highly pathogenic H5N1 influenza A virus (H5N1) and the Pandemic 2009 influenza H1N1 virus. Since 2003 the H5N1 virus has caused widespread disease and death in poultry, mainly in south East Asia and Africa. In humans the number of cases infected with this virus is few but the mortality has been about 60%. Most patients have presented with severe pneumonia and acute respiratory distress syndrome. The second influenza virus, the pandemic H1N1 2009, emerged in Mexico in March this year. This virus acquired the ability for sustained human to human spread and within a few months spread throughout the world and infected over 4 lakh individuals. The symptoms of infection with this virus are similar to seasonal influenza but it currently affecting younger individuals more often. Fortunately the mortality has been low. Both these new influenza viruses are currently circulating and have different clinical and epidemiological characteristics.  相似文献   

15.
Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.  相似文献   

16.
Complete nucleotide sequence of the genome segments encoding the surface glycoproteins, hemagglutinin, and neuraminidase of influenza A virus H1N1 derived from the patients with influenza in the context of pandemic (H1N1) 2009 was determined out of 14 isolates of pandemic influenza. The philogenetic analysis of these sequences demonstrated their genetic similarity to the corresponding genes of the pandemic influenza virus A (H1N1) 2009 isolates obtained in other countries; each gene homology was greater than 99%. Neuraminidase mutations causing virus resistance to oseltamivir and other neuraminidase inhibitors, known from the literature, were not detected. The hemagglutinin gene mutation D222G was found in 4 isolates from autopsy material. In the hemagglutinin of pandemic A/Salekhard/01/2009(H1N1) isolate a mutation G155E leading to the increase in viral replication in developing chick embryos was detected. The nature and frequency of nucleotides substitutions within HA and NA genes were determined in the current research.  相似文献   

17.
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices.  相似文献   

18.
建立新甲型H1N1流感病毒小鼠致死模型,为研究致病性、宿主适应性以及疫苗保护性提供动物模型,并寻找病毒在适应宿主过程中影响毒力和适应性的关键位点。将新甲型H1N1流感病毒A/四川/SWL1/2009 H1N1在小鼠中连续传15代,各代次毒株均在MDCK细胞上增殖后进行测序,根据序列分析结果选择6个传代毒株感染小鼠,连续监测14 d体重和死亡情况;并对第14代和15代病毒在噬斑实验纯化后克隆和测序分析。原代病毒不致死BABL/C小鼠,经动物体内连续传代适应宿主动物后,其毒力增强,具体表现为所选的6个传代毒株中第7、11、15代毒株可以100%致死试验小鼠;分析这6个传代毒株的全基因组表明这些毒株的部分氨基酸位点发生突变。新甲型H1N1流感病毒经小鼠体内连续传代后,建立了小鼠致死模型,病毒毒力增强可能与某些氨基酸位点的改变有关。  相似文献   

19.
20.
The 2009 H1N1 pandemic has slowed down its spread after initial speed of transmission. The conventional swine influenza H1N1 virus (SIV) in pig populations worldwide needs to be differentiated from pandemic H1N1 influenza virus, however it is also essential to know about the exact role of pigs in the spread and mutations taking place in pig-to-pig transmission. The present paper reviews epidemiological features of classical SIV and its differentiation with pandemic influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号