首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
大量研究已经证实生长因子和激素在胚胎早期发育的细胞增殖与分化过程中起着重要的作用.应用定量ELISA,RT—PCR,免疫印迹和免疫荧光的方法检测胰岛素在小鼠受精卵和卵母细胞中的表达和定位.发现胰岛素均匀分布在卵细胞的胞浆中.同时也检测到mTOR(mammalian target of rapamycin)和p70S6K的表达、活性和定位.在小鼠受精卵中mTOR和p70S6K的表达没有明显不同.二者在G1,G2和M期分布在细胞浆,在S期聚集在原核的周围.在不同时期,mTOR的活性是波动的.利用P13K的特异性抑制剂渥曼青霉素,观察到卵裂率明显减低.当使用mTOR的特异性抑制剂雷帕霉素时,受精卵的第一次有丝分裂延迟.这些结果表明胰岛素存在于小鼠的卵母细胞和受精卵中,并且胰岛素可能通过激活P13K/PKB/mTOR/S6K的信号传导通路在小鼠的早期胚胎发育中发挥功能作用.  相似文献   

2.
具癌基因特性的Skp2在大多数肿瘤组织和肿瘤细胞中异常高表达,它作为SCFSkp2复合物的底物识别亚基调控p27KIP蛋白的稳定性而促进细胞G1/S期转换.为进一步明确Skp2与G2/M周期检查点的关系,在HeLa细胞中过表达Skp2以及通过反义寡核苷酸抑制Skp2表达.结果发现:Skp2能促进细胞周期运转,表现为S期细胞增多和G2/M期细胞减少,其中F-box结构域具有重要的功能意义;反义寡核苷酸抑制Skp2表达后,HeLa细胞发生显著的G2/M期阻滞;MTT检测结果表明,400nmol/L的Skp2的反义寡核苷酸能明显抑制HeLa细胞的增殖活性;Western印迹结果表明,HeLa细胞中Skp2可能通过负调控p21WAF的稳定性来参与G2/M检查点调控,这在用放线菌素D处理HeLa细胞的实验中得到验证.这些结果初步揭示了Skp2参与HeLa细胞G2/M周期检查点调控的分子机制.  相似文献   

3.
研究旨在探究饲料脂肪水平对大菱鲆(Scophthalmus maximus)幼鱼雷帕霉素受体(TOR)信号通路的影响。以大菱鲆幼鱼[初始体重(8.6±0.01) g]为实验对象, 配制脂肪水平分别为11.69% (适宜脂肪组)和16.58% (高脂组)的2种等氮饲料在室内循环水系统中进行投喂实验, 养殖周期为97d。结果显示: (1)饲料脂肪水平升高对大菱鲆幼鱼存活和特定生长率(SGR)无显著影响(P>0.05)。(2)与适宜脂肪组相比, 肝脏中TOR和4EBP1 mRNA水平在高脂组上调(P<0.05)而4EBP2 mRNA水平在高脂组下调(P<0.05)。此外, 与适宜脂肪组相比, 肌肉中TOR和4EBP1 mRNA水平在高脂组下调(P<0.05)而4EBP2 mRNA水平在高脂组无显著变化。(3)饲料脂肪水平显著影响AKT、TOR和4EBPs磷酸化水平。肝脏中p-AKT (T308和S473)/AKT、p-mTOR(S2448)/mTOR和p-4EBP1 (T37/46)/4EBP1在高脂组显著高于适宜脂肪组,而p-p70S6K (T389)/p70S6K在高脂组显著低于适宜脂肪组。肌肉中p-AKT (S473)/AKT、p-mTOR (S2448)/mTOR和p-4EBP1 (T37/46)/4EBP1在高脂组显著低于适宜脂肪组,而p-p70S6K (T389)/p70S6K在高脂组显著高于适宜脂肪组。结果表明: 大菱鲆幼鱼肝脏和肌肉TOR、4EBP1和4EBP2的mRNA表达量与AKT、TOR、4EBP1和p70 S6K磷酸化受到饲料脂肪水平调控, 饲料脂肪水平升高, 激活了肝脏TOR信号通路, 同时肌肉TOR信号通路受到部分抑制。  相似文献   

4.
目的:多倍性是物种形成的重要机制,决定一些重要器官细胞产生的数量和功能,而且与某些病理过程(如恶性肿瘤)的发生有密切关系.我们通过建立相对同步化的多倍体细胞模型,已经证实mTOR/S6K1参与多倍体细胞周期的调控.本课题主要研究mTOR下游的另一个重要信号分子4E-BP1是否也参与细胞的倍体化调控.方法:诺考达唑诱导Dami细胞建立相对同步化的多倍体细胞模型,Western-blot分析多倍体细胞模型中mTOR/4E-BP1通路信号分子表达和磷酸化修饰位点的变化,流式细胞仪双荧光分析4E-BP1不同结构域磷酸化位点修饰与细胞周期各时相的关系.结果:诺考达唑诱导的Dami细胞可作为相对同步化的多倍体细胞周期模型,在二倍体和多倍体细胞周期中,mTOR表达增加及第2448位丝氨酸位点磷酸化发生在G1期进入S期,4E-BP1的第37,46位苏氨酸和第65位丝氨酸位点磷酸化发生在G2/M期.结论:mTOR/4E-BP1通路参与多倍体细胞周期的调控.  相似文献   

5.
目的:多倍性是物种形成的重要机制,决定一些重要器官细胞产生的数量和功能,而且与某些病理过程(如恶性肿瘤)的发生有密切关系。我们通过建立相对同步化的多倍体细胞模型,已经证实mTOR/S6K1参与多倍体细胞周期的调控。本课题主要研究roTOR下游的另一个重要信号分子4E-BP1是否也参与细胞的倍体化调控。方法:诺考达唑诱导Dami细胞建立相对同步化的多倍体细胞模型,Western-blot分析多倍体细胞模型中mTOR/4E—BP1通路信号分子表达和磷酸化修饰位点的变化,流式细胞仪双荧光分析4E—BP1不同结构域磷酸化位点修饰与细胞周期各时相的关系。结果:诺考达唑诱导的Dami细胞可作为相对同步化的多倍体细胞周期模型,在二倍体和多倍体细胞周期中,mTOR表达增加及第2448位丝氨酸位点磷酸化发生在G1期进入S期,4E—BP1的第37,46位苏氨酸和第65位丝氨酸位点磷酸化发生在G2/M期。结论:mTOR/4E-BP1通路参与多倍体细胞周期的调控。  相似文献   

6.
胰岛素和佛波酯在蛋白质合成中经不同途径激活p70 S6激酶   总被引:1,自引:1,他引:0  
为研究佛波酯 (PMA)和胰岛素在蛋白质合成中的信号传递 ,应用激酶活性测定和Western印迹等方法 ,分别检测mTOR(mammaliantargetofrapamycin)特异性抑制剂rapamycin或磷脂酰肌醇 3激酶 (PI3K)的特异性抑制剂LY2 94 0 0 2预处理、PMA或胰岛素处理的血清饥饿的中国仓鼠肺成纤维细胞 (CHL)中p70S6激酶 (p70S6K)和蛋白激酶B(PKB)的活性及表达 .结果显示 ,PMA或胰岛素刺激促进p70S6K的活化和表达 .而rapamycin预处理可阻断PMA和胰岛素对p70S6K的激活作用 ,表明PMA和胰岛素可能是通过mTOR 依赖性途径激活p70S6K .结果还显示 ,胰岛素刺激促进PKB的活化和表达 ,而PMA对PKB的活性和表达无影响 .LY2 94 0 0 2预处理可阻断胰岛素对p70S6K和PKB的激活作用 ,但不能抑制PMA刺激引起的p70S6K的活化 .表明胰岛素和PMA介导p70S6K活化的信号途径有所不同 ,胰岛素介导p70S6K的活化可能依赖于PI3K途径 ,而PMA介导p70S6K的活化不通过PI3K途径  相似文献   

7.
血管形成是肿瘤生长过程中不可或缺的因素。血小板衍生生长因子受体(platelet-derived growth factor receptor, PDGFR)通过与其配体结合刺激新生血管形成,与多种肿瘤的发生发展密切相关。研究表明其亚型PDGFRβ高表达于大多数骨肉瘤病人标本及细胞株中,促进肿瘤增殖,但具体机制仍未明确。在本研究中,分别对HOS骨肉瘤细胞株进行特异性配体PDGFBB刺激处理及小干扰RNA (siRNA)敲降PDGFRβ处理,然后检测其增殖、细胞周期及相关蛋白的表达。结果表明:经过PDGFBB刺激后细胞增殖能力增强;细胞周期结果显示处于G1期的HOS细胞数量增多,S期和G2/M期细胞数量减少,G2期相关蛋白Cyclin B1和CDK1以及G1期相关蛋白CyclinE2和CDK2表达增高,提示PDGFBB可能促进了G2/M期转化。而经siRNA干扰后,PDGFRβ在mRNA和蛋白水平均显示表达量下降;细胞增殖受到抑制。检测细胞周期结果发现在敲降PDGFRβ后,进入S期的细胞数量增加了约9.71%,而G2/M期的细胞数量约减少了6.78%,S期相关蛋白Cyclin A1和CDK2明显降低,提示发生了S期阻滞。因此我们推测,PDGFRβ通过调控细胞周期进程影响骨肉瘤细胞的增殖。本研究为PDGFRβ影响HOS细胞增殖及其潜在机制提供了理论依据,为PDGFRβ可以作为治疗骨肉瘤的潜在治疗靶点提供了理论依据。  相似文献   

8.
NGX6基因对人结肠癌细胞HT-29细胞周期的影响   总被引:7,自引:1,他引:6  
NGX6基因是新克隆的候选抑瘤基因,研究表明NGX6重表达可抑制结肠癌细胞的增殖.为进一步研究NGX6对细胞周期的影响,采用流式细胞仪检测NGX6重表达对结肠癌细胞HT-29细胞周期的影响,发现NGX6重表达可增加HT-29细胞在G0/G1期的分布比例,减少了S,G2,M期细胞数.利用蛋白质印迹和流式细胞术分析NGX6转染前后HT-29细胞周期素(cyclins)和细胞周期素依赖性蛋白激酶抑制物(cyclin-dependentkinaseinhibitor,CKI)的表达变化,发现NGX6可下调HT-29细胞中cyclinE、cyclinD1的表达及上调p27的表达,对cyclinA和cyclinB的表达无明显影响,p16在三组结肠癌细胞中均无表达.研究结果表明,NGX6在HT-29细胞中通过下调cyclinE、cyclinD1和上调p27的表达,阻滞细胞周期于G0/G1期,从而发挥其在结肠癌中的抑瘤作用.  相似文献   

9.
目的 研究Ubiquitin B(Ubb)在热休克蛋白90(HSP90)抑制剂17-AAG诱导人宫颈癌HeLa细胞周期阻滞中的作用及机制.方法 不同浓度17-AAG处理HeLa细胞后,流式细胞术检测细胞周期分布,荧光分光光度法检测细胞蛋白酶体活性变化;Ubb siRNA 转染HeLa细胞后,Real Time PCR法检测Ubb干扰效应,Western 印迹检测细胞周期相关蛋白的表达改变.结果 17-AAG可以诱导HeLa细胞阻滞于G2/M期,同时显著增强细胞内糜蛋白酶样蛋白酶体活性,并且两者的变化均呈现剂量依赖性;干扰HeLa细胞内Ubb后,可以逆转17-AAG引起的G2/M期阻滞;17-AAG可明显下调HeLa细胞周期相关蛋白Cdk1和Hec1的表达,并且这一变化也是Ubb依赖的.结论 Ubb在17-AAG诱导的HeLa细胞周期阻滞中发挥重要作用,Ubb和HSP90抑制剂17-AAG在功能上相互关联,可能成为宫颈癌治疗的新靶点.  相似文献   

10.
Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.  相似文献   

11.
In order to study the relationship between mTOR (mammalian target of rapamycin) and tumorigenesis, we investigated the expression and activity of mTOR, and its substrates, alpha1, alpha2, beta1 and beta2 isoforms of p70S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein-1 (4EBP-1) in oral squamous carcinoma and Hela cells using RT-PCR, immunohistochemistry, statistical analysis and Western blotting. The result of Western blots showed that in poorly differentiated oral squamous carcinoma, the expression level of mTOR and p70S6k increased in M phase, while that of 4EBP-1 decreased. The results of RT-PCR and immunohistochemistry assay are the same as that of Western blot. In Hela cells, the RT-PCR results showed that the level of mTOR mRNA did not change during the cell cycle. In M phase, the expression of alpha1, alpha2, beta1 and beta2 isoforms of p70S6K increased noticeably, while the expression of 4EBP-1 decreased. The immunoblot results in Hela cells were consistent with the RT-PCR results. Furthermore, the activity assays in Hela cells suggested that,in phase G2 and M, the activity of mTOR was maintained at a higher level than in any other phase, while 4EBP-1 decreased in phase M. These results may help in further investigations of the important role of mTOR in cell cycle and tumorigenesis.  相似文献   

12.
X Li  Z Li  W Zhou  X Xing  L Huang  L Tian  J Chen  C Chen  X Ma  Z Yang 《Cell death & disease》2013,4(9):e803-9
Our previous studies have shown that the inhibition of phosphatidylinositol 3-kinase (PI3K) or mTOR complex 1 can obviously promote the Coxsackievirus B3 (CVB3)-induced apoptosis of HeLa cells by regulating the expression of proapoptotic factors. To further illustrate it, Homo sapiens eIF4E-binding protein 1 (4EBP1), p70S6 kinase (p70S6K), Akt1 and Akt2 were transfected to HeLa cells, respectively. And then, we established the stable transfected cell lines. Next, after CVB3 infection, apoptosis in different groups was determined by flow cytometry; the expressions of Bim, Bax, caspase-9 and caspase-3 were examined by real-time fluorescence quantitative PCR and western blot analysis; the expression of CVB3 mRNA and viral capsid protein VP1 were also analyzed by real-time fluorescence quantitative PCR, western blot analysis and immunofluorescence, respectively. At the meantime, CVB3 replication was observed by transmission electron microscope. We found that CVB3-induced cytopathic effect and apoptosis in transfected groups were more obvious than that in controls. Unexpectedly, apoptosis rate in Akt1 group was higher than others at the early stage after viral infection and decreased with the viral-infected time increasing, which was opposite to other groups. Compared with controls, the expression of CVB3 mRNA was increased at 3, 6, 12 and 24 h postinfection (p. i.) in all groups. At the meantime, VP1 expression in 4EBP1 group was higher than control during the process of infection, while the expressions in the other groups were change dynamically. Moreover, overexpression of 4EBP1 did not affect the mRNA expressions of Bim, Bax, caspase-9 and caspase-3; while protein expressions of Bim and Bax were decreased, the self-cleavages of caspase-9 and caspase-3 were stimulated. Meanwhile, overexpression of p70S6K blocked the CVB3-induced Bim, Bax and caspase-9 expressions but promoted the self-cleavage of caspase-9. In the Akt1 group, it is noteworthy that the expressions of Bim protein were higher than controls at 3 and 6 h p. i. but lower at 24 h p. i., and the expression of Bax protein were higher at 6 and 24 h p. i., while their mRNA expressions were all decreased. Furthermore, overexpression of Akt1 stimulated the procaspase-9 and procaspase-3 expression but blocked their self-cleavages. Overexpression of Akt2, however, had little effect on Bim, Bax and caspase-3, while prevented caspase-9 from self-cleavage at the late stage of CVB3 infection. As stated above, our results demonstrated that overexpression of 4EBP1, p70S6K, Akt1 or Akt2 could promote the CVB3-induced apoptosis in diverse degree via different mediating ways in viral replication and proapoptotic factors in BcL-2 and caspase families. As 4EBP1, p70S6K and Akt are the important substrates of PI3K and mammalian target of rapamycin (mTOR), we further illustrated the role of PI3K/Akt/mTOR signaling pathway in the process of CVB3-induced apoptosis.  相似文献   

13.
Colorectal cancer (CRC) is commonly known as one of the most prominent reasons for cancer-related death in China. Ras homolog enriched in brain (RHEB) and the mammalian target activity of rapamycin (mTOR) signaling pathway were found correlated with CRC, but their specific interaction in CRC was still to be investigated. Therefore, we explored whether RHEB gene silencing affected the cell proliferation, differentiation, and apoptosis by directly targeting the mTOR signaling pathway in cells previously harvested from CRC patients. A microarray analysis was subsequently conducted to investigate the relationship between RHEB and mTOR. Eighty-three adjacent normal tissues and CRC tissues were selected. Immunohistochemistry was carried out to detect the positive expression rates of RHEB and Ki-67 in the CRC tissues. Cells were then transfected with different siRNAs to investigate the potential effects RHEB would have on CRC progression. The expressions of RHEB, 4EBP1, ribosomal protein S6 kinase (p70S6K), proliferating cell nuclear antigen (PCNA), B cell lymphoma 2 (bcl-2), and bcl-2-associated X protein (bax) were determined and then the cell cycle, cell proliferation, and apoptotic rate were also measured. We identified RHEB and mTOR as upregulated genes in CRC. Cells treated with RHEB silencing showed a decreased extent of mTOR, p70S6K, 4EBP1 phosphorylation and expression of RHEB, Ki-67, mTOR, p70S6K, 4EBP1, bcl-2, and PCNA as well as decreased activity of cell proliferation and differentiation; although, the expression of bax was evidently higher. Collectively, our data propose the idea that RHEB gene silencing might repress cell proliferation and differentiation while accelerating apoptosis via inactivating the mTOR signaling pathway.  相似文献   

14.
溶酶体α-甘露糖苷酶是糖蛋白降解途径的主要外糖苷酶,该酶缺陷引起溶酶体α-甘露糖苷贮积症.用RT-PCR法从HeLa细胞中克隆的人溶酶体α-甘露糖苷酶cDNA含有1个由2964bp组成的阅读框,编码由988个氨基酸组成的多肽,前26个氨基酸为潜在的前导序列,成熟多肽的预测分子量为111kD,具有11个潜在的N-交联糖基化部位.用逆转录病毒介导法导入患者细胞后,该cDNA表达高活性α-甘露糖苷酶.序列分析表明,此cDNA与已发表的拟似人溶酶体α-甘露糖苷酶cDNA有不同程度的差异,尤其是第2315位碱基的T-C转换可能与控制酶活性有关  相似文献   

15.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

16.

Background

The present study examines the hypothesis that Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signaling is increased in hypertrophic and decreased in atrophic denervated muscle. Protein expression and phosphorylation of Akt1, Akt2, glycogen synthase kinase-3beta (GSK-3beta), eukaryotic initiation factor 4E binding protein 1 (4EBP1), 70?kD ribosomal protein S6 kinase (p70S6K1) and ribosomal protein S6 (rpS6) were examined in six-days denervated mouse anterior tibial (atrophic) and hemidiaphragm (hypertrophic) muscles.

Results

In denervated hypertrophic muscle expression of total Akt1, Akt2, GSK-3beta, p70S6K1 and rpS6 proteins increased 2?C10 fold whereas total 4EBP1 protein remained unaltered. In denervated atrophic muscle Akt1 and Akt2 total protein increased 2?C16 fold. A small increase in expression of total rpS6 protein was also observed with no apparent changes in levels of total GSK-3beta, 4EBP1 or p70S6K1 proteins. The level of phosphorylated proteins increased 3?C13 fold for all the proteins in hypertrophic denervated muscle. No significant changes in phosphorylated Akt1 or GSK-3beta were detected in atrophic denervated muscle. The phosphorylation levels of Akt2, 4EBP1, p70S6K1 and rpS6 were increased 2?C18 fold in atrophic denervated muscle.

Conclusions

The results are consistent with increased Akt/mTOR signaling in hypertrophic skeletal muscle. Decreased levels of phosphorylated Akt (S473/S474) were not observed in denervated atrophic muscle and results downstream of mTOR indicate increased protein synthesis in denervated atrophic anterior tibial muscle as well as in denervated hypertrophic hemidiaphragm muscle. Increased protein degradation, rather than decreased protein synthesis, is likely to be responsible for the loss of muscle mass in denervated atrophic muscles.  相似文献   

17.
Impairment of placental growth is a major factor contributing to intrauterine growth retardation (IUGR) in both human pregnancy and animal production. Results of recent studies indicate that administration of L-arginine (Arg) to gestating pigs or sheep with IUGR fetuses can enhance fetal growth. However, the underlying mechanisms are largely unknown. The present study tested the hypothesis that Arg stimulates the mammalian target of rapamycin (mTOR) signaling pathway and protein synthesis in porcine conceptus trophectoderm (pTr2) cells. The cells were cultured for 4 days in Arg-free Dulbecco's modified Eagle's Ham medium containing 10, 50, 100, 200, 350 or 500 μM Arg. Cell numbers, protein synthesis and degradation, as well as total and phosphorylated levels of mTOR, ribosomal protein S6 kinase 1 (p70S6K) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1), were determined. The pTr2 cells exhibited time (0-6 days)- and Arg concentration (10-350 μM)-dependent increases in proliferation. Addition of 100 and 350 μM Arg to culture medium dose-dependently increased (a) protein synthesis and decreased protein degradation and (b) the abundance of total and phosphorylated mTOR, p70S6K and 4EBP1 proteins. Effects of 350 μM Arg on intracellular protein turnover were only modestly affected when nitric oxide synthesis was inhibited. Collectively, these results indicate a novel and important role for Arg in promoting growth of porcine placental cells largely via a nitric-oxide-independent pathway. Additionally, these findings help to explain beneficial effects of Arg supplementation on improving survival and growth of embryos/fetuses in mammals.  相似文献   

18.
Angiotensin IV (Ang IV)-stimulated cell proliferation is regulated through activation of multiple signaling modules in lung endothelial cells (EC). Because eukaryotic intitiation factor 4E (eIF4E) binding protein 1 (4EBP1) plays a critical role in the RNA translation and the regulation of cell growth, we examined whether Ang IV modulates expression and/or phosphorylation of eIF4E and 4EBP1 as well as the role of multiple signaling events associated with 4EBP1 phosphorylation in EC. Ang IV stimulation increased phosphorylation but not expression of eIF4E and 4EBP1 proteins. Ang IV stimulation selectively phosphorylated Thr46 > Thr70 > Ser65 but not Thr37 residues in 4EBP1. Pretreatment of cells with PD-98059 and rapamycin, inhibitors of mitogen-activated protein kinase (ERK1/2) and mammalian target for rapamycin (mTOR), respectively, partially blocked Ang IV-mediated phosphorylation of 4EBP1. In contrast, overexpression of p70 ribosomal S6 kinase (p70S6K) and protein kinase B (Akt) enhanced phosphorylation of 4EBP1 and eIF4E binding affinity to the cap region of mRNA. These results support critical roles of multiple signaling and phosphorylation of 4EBP1 by Ang IV in translation process and protein synthesis.  相似文献   

19.
Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号