首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
大量研究已经证实生长因子和激素在胚胎早期发育的细胞增殖与分化过程中起着重要的作用.应用定量ELISA,RT—PCR,免疫印迹和免疫荧光的方法检测胰岛素在小鼠受精卵和卵母细胞中的表达和定位.发现胰岛素均匀分布在卵细胞的胞浆中.同时也检测到mTOR(mammalian target of rapamycin)和p70S6K的表达、活性和定位.在小鼠受精卵中mTOR和p70S6K的表达没有明显不同.二者在G1,G2和M期分布在细胞浆,在S期聚集在原核的周围.在不同时期,mTOR的活性是波动的.利用P13K的特异性抑制剂渥曼青霉素,观察到卵裂率明显减低.当使用mTOR的特异性抑制剂雷帕霉素时,受精卵的第一次有丝分裂延迟.这些结果表明胰岛素存在于小鼠的卵母细胞和受精卵中,并且胰岛素可能通过激活P13K/PKB/mTOR/S6K的信号传导通路在小鼠的早期胚胎发育中发挥功能作用.  相似文献   

2.
PI3K信号通路通过Skp2、p27调节肝癌细胞的增殖   总被引:2,自引:0,他引:2  
探讨磷脂酰肌醇3-激酶(PI3K)信号通路调节肝癌细胞增殖的机制.用LY294002特异性阻断PI3K信号通路后,人肝癌细胞(SMMC-7721)的增殖明显被抑制.RT-PCR及蛋白质印迹结果显示,LY294002增加了p27蛋白的表达,但不影响p27的mRNA表达.在LY294002处理的细胞中转入p27的RNAi质粒以干扰p27蛋白的表达后,肝癌细胞的增殖能力可部分恢复.放线菌酮(Chx)处理实验表明,阻断PI3K信号通路使p27蛋白的半衰期延长,稳定性增加.进一步研究发现,LY294002可抑制介导p27蛋白降解的关键分子Skp2的mRNA表达,还可缩短Skp2蛋白的半衰期,降低Skp2蛋白的稳定性.但在SMMC-7721中分别转染PI3K下游重要靶分子Akt的持续激活和失活突变体,却并不影响p27蛋白的表达.这些结果表明,PI3K信号通路在转录及翻译后水平调节Skp2的表达而影响p27蛋白的降解,从而调节肝癌细胞的增殖,但Akt并没有参与这种调节.  相似文献   

3.
mTOR及其底物在HeLa细胞的细胞周期不同时相中的表达   总被引:6,自引:0,他引:6  
为探讨细胞生长的机制 ,用RT PCR、Western印迹及蛋白激酶活性测定等方法对同步化的HeLa细胞的细胞周期不同时相中mTOR(mammaliantargetofrapamycin) ,p70S6激酶 (p70S6K)的α1 、α2 、β1 、β2 不同亚型及起始因子 4E结合蛋白 1 (4EBP1 )的表达进行了检测 .RT PCR的结果表明 :在G1 、S1 、G2 、M1 、M2 几个细胞周期时相中 ,mTOR的mRNA表达无明显变化 .mTOR的底物P70S6K的亚型α1 、α2 、β1 、β2 在M期表达均有明显增加 .4EBP1的表达在M期明显减少 .免疫印迹的结果与RT PCR的一致 ,即M期p70S6K的α1 、α2 、均有增加 ,4EBP1在M期减少 .活性测定表明 ,G2 期、M期mTOR较其它期有明显增加 ,4EBP1在M期活性有所下降 .研究结果表明 :mTOR、p70S6K、4EBP1很可能在HeLa细胞的生长中起重要的调节作用  相似文献   

4.
 为澄清中性粒细胞胞浆 Ca2 +和某些 O-·2 产生相关激酶对 NADPH氧化酶激活和肌动蛋白聚合的作用 ,利用分化为中性粒细胞样的 HL- 60细胞研究了胞浆 Ca2 +螯合剂 BAPTA- AM和激酶抑制剂对这些激酶激活、NADPH氧化酶激活和肌动蛋白聚合的影响 .使用 1 0 μmol/L的 Ca2 +螯合剂 BAPTA- AM去除胞浆 Ca2 +后 ,趋化肽 f MLP诱导的 O-·2 产生明显减少 ,但不影响 f MLP诱导的肌动蛋白聚合 ;8μmol/L的 PKC激酶抑制物 GF1 0 92 0 3x几乎完全抑制 O-·2 产生 ;50 μmol/L的p38激酶抑制物 SB2 0 3580、50 μmol/L的 ERK激酶抑制物 PD0 980 59和 0 .1 μmol/L的 PI3激酶抑制物渥曼青霉素 (Wortmannin)使 f MLP诱导的 O-·2 产生大约减少一半 ;其中 Wortmannin还抑制 f MLP诱导的肌动蛋白聚合 ;f MLP刺激细胞后 ,PI3- K、p38和 ERK激酶迅速激活 ,但这些激酶的激活对 Ca2 +是非必需的 .这些结果说明 Ca2 +依赖途径 (PKC)和 Ca2 +非依赖途径 (PI3- K、p38和ERK)对 NADPH氧化酶激活都起着重要作用 ,而 Ca2 +非依赖途径中的 PI3- K激酶还参与中性粒细胞样 HL- 60细胞的肌动蛋白聚合 .  相似文献   

5.
为澄清中性粒细胞胞浆 Ca2 和某些 O-·2 产生相关激酶对 NADPH氧化酶激活和肌动蛋白聚合的作用 ,利用分化为中性粒细胞样的 HL- 60细胞研究了胞浆 Ca2 螯合剂 BAPTA- AM和激酶抑制剂对这些激酶激活、NADPH氧化酶激活和肌动蛋白聚合的影响 .使用 1 0 μmol/L的 Ca2 螯合剂 BAPTA- AM去除胞浆 Ca2 后 ,趋化肽 f MLP诱导的 O-·2 产生明显减少 ,但不影响 f MLP诱导的肌动蛋白聚合 ;8μmol/L的 PKC激酶抑制物 GF1 0 92 0 3x几乎完全抑制 O-·2 产生 ;50 μmol/L的p38激酶抑制物 SB2 0 3580、50 μmol/L的 ERK激酶抑制物 PD0 980 59和 0 .1 μmol/L的 PI3激酶抑制物渥曼青霉素 (Wortmannin)使 f MLP诱导的 O-·2 产生大约减少一半 ;其中 Wortmannin还抑制 f MLP诱导的肌动蛋白聚合 ;f MLP刺激细胞后 ,PI3- K、p38和 ERK激酶迅速激活 ,但这些激酶的激活对 Ca2 是非必需的 .这些结果说明 Ca2 依赖途径 (PKC)和 Ca2 非依赖途径 (PI3- K、p38和ERK)对 NADPH氧化酶激活都起着重要作用 ,而 Ca2 非依赖途径中的 PI3- K激酶还参与中性粒细胞样 HL- 60细胞的肌动蛋白聚合 .  相似文献   

6.
 探讨在肿瘤坏死因子α(TNF-α)作用下 ,粘着斑激酶 (focal adhesion kinase,FAK)对蛋白激酶 B(PKB)蛋白水平的影响 .利用构建、转染 FAK反义质粒来特异性降低 SMMC- 772 1细胞的FAK含量 ,及用 Western杂交的方法来检测 PKB的蛋白含量 .文献报道 TNF- α能够激活磷脂酰肌醇 3-激酶 (PI3K)而使 PKB发生磷酸化 .但是至于 TNF-α对 PKB蛋白水平的影响目前并无报道 .研究发现 ,当用 wortmannin特异性抑制 PI3K活性后可以显著降低 PKB的蛋白含量 .提示PI3K对维持 PKB的基础蛋白水平是必需的 .但是 TNF- α本身对 PKB的蛋白水平无明显影响 .而当用不同浓度的 TNF- α和 wortmannin处理 SMMC- 772 1细胞时 ,发现 PKB的蛋白含量随着TNF-α浓度的增加而降低 .提示 TNF-α可能除了通过 PI3K外 ,还可能通过另一条途径来下调PKB的表达 .而当用 FAK反义质粒转染 SMMC- 772 1细胞后 (FAK下降了 60 % ) ,发现在当用不同浓度的 TNF- α处理的情况下 ,FAK反义质粒转染株 AS- 772 1细胞的 PKB含量降低为对照的70 % ;而在用 TNF-α和 wortmannin处理的情况下 ,下降为对照的 40 %~ 60 % .TNF-α能够通过PI3K及另一未知途径来影响 PKB的蛋白水平 .而 FAK在 TNF- α作用下能够不通过 PI3K来影响PKB的蛋白水平 .  相似文献   

7.
Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.  相似文献   

8.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

9.
该研究分离并鉴定了原代小鼠子宫内膜基质细胞(mouse endometrial stromal cell,m ESC)。过表达类固醇生成因子-1(steroidogenic factor-1,SF-1)可显著诱导该细胞的增殖能力、促进增殖相关基因PCNA(proliferating cell nuclear antigen)及PH3(phospho-histone 3)的蛋白质水平表达增高以及激活PI3K-AKT-m TOR信号通路;PI3K信号通路抑制剂LY294002和m TOR信号通路抑制剂Rapamycin等可抑制mESC中SF-1过表达所引起p AKT S473、pm TOR S2448、pp70S6K T389、p S6 S235/236和p4E-BP1 T37/46的蛋白质水平的增高。该研究初步揭示了SF-1表达与mESC增殖的相关性。  相似文献   

10.
PI3K-Akt信号传导通路对糖代谢的调控作用   总被引:1,自引:0,他引:1  
磷脂酰肌醇3-激酶(PI3Ks)作为酪氨酸激酶和G蛋白偶联受体的主要下游分子,通过催化产生第二信使3,4,5-三磷酸磷脂酰肌醇(PIP3)并激活Akt、糖原合酶激酶-3(GSK-3)、Forkhead转录因子FoxO1、mTOR(mammalian target of rapamycin)等下游分子,将多种生长因子及细胞因子的信号传递到细胞内,从而对细胞增殖、分化、凋亡和葡萄糖转运等多种生物过程起重要的调节作用.PTEN(phosphatase and tensin homologue)是PI3K信号通路的重要负调节因子.本文将对PI3K-Akt信号通路在糖代谢中的作用予以简要综述.  相似文献   

11.
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.  相似文献   

12.
13.
14.
The purpose of this study was to examine the role of the ribosomal protein S6 protein kinase (p70S6K), a protein synthesis regulator, in promoting retinal neuronal cell survival. Differentiated R28 rat retinal neuronal cells were used as an experimental model. Cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% newborn calf serum, and during the period of experimentation were exposed either to the absence or presence of 10 nm insulin. Insulin treatment induced p70S6K, mTOR, and Akt phosphorylation, effects that were completely prevented by the PI3K inhibitor, LY294002. Insulin-induced phosphorylation of p70S6K and mTOR was prevented by the mTOR inhibitor, rapamycin. Apoptosis, induced by serum deprivation and evaluated by Hoechst staining, was inhibited by insulin treatment in R28 cells, but not in L6 muscle cells. This effect of insulin was also largely prevented by rapamycin. Inhibition of p70S6K activity by exogenous expression of a dominant negative mutant of p70S6K prevented insulin-induced cell survival, whereas, overexpression of wild type p70S6K or expression of a rapamycin resistant form of the kinase enhanced the effect of insulin on survival. Enhanced cell survival under the latter condition was accompanied by increased p70S6K activity and phosphorylation. Rapamycin did not inhibit insulin induced p70S6K phosphorylation and activity in cells transfected with the rapamycin-resistant mutant. Together, these results suggest that p70S6K plays a key role in insulin stimulated retinal neuronal cell survival.  相似文献   

15.
16.
We have demonstrated that T3 increases the expression of ZAKI-4alpha, an endogenous calcineurin inhibitor. In this study we characterized a T3-dependent signaling cascade leading to ZAKI-4alpha expression in human skin fibroblasts. We found that T3-dependent increase in ZAKI-4alpha was greatly attenuated by rapamycin, a specific inhibitor of a protein kinase, mammalian target of rapamycin (mTOR), suggesting the requirement of mTOR activation by T3. Indeed, T3 activated mTOR rapidly through S2448 phosphorylation, leading to the phosphorylation of p70(S6K), a substrate of mTOR. This mTOR activation is mediated through phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) signaling cascade because T3 induced Akt/PKB phosphorylation more rapidly than that of mTOR, and these T3-dependent phosphorylations were blocked by both PI3K inhibitors and by expression of a dominant negative PI3K (Deltap85alpha). Furthermore, the association between thyroid hormone receptor beta1 (TRbeta1) and PI3K-regulatory subunit p85alpha, and the inhibition of T3-induced PI3K activation and mTOR phosphorylation by a dominant negative TR (G345R) demonstrated the involvement of TR in this T3 action. The liganded TR induces the activation of PI3K and Akt/PKB, leading to the nuclear translocation of the latter, which subsequently phosphorylates nuclear mTOR. The rapid activation of PI3K-Akt/PKB-mTOR-p70(S6K) cascade by T3 provides a new molecular mechanism for thyroid hormone action.  相似文献   

17.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

18.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

19.
The AMP-activated protein kinase (AMPK) is known to increase cardiac insulin sensitivity on glucose uptake. AMPK also inhibits the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) pathway. Once activated by insulin, mTOR/p70S6K phosphorylates insulin receptor substrate-1 (IRS-1) on serine residues, resulting in its inhibition and reduction of insulin signaling. AMPK was postulated to act on insulin by inhibiting this mTOR/p70S6K-mediated negative feedback loop. We tested this hypothesis in cardiomyocytes. The stimulation of glucose uptake by AMPK activators and insulin correlated with AMPK and protein kinase B (PKB/Akt) activation, respectively. Both treatments induced the phosphorylation of Akt substrate 160 (AS160) known to control glucose uptake. Together, insulin and AMPK activators acted synergistically to induce PKB/Akt overactivation, AS160 overphosphorylation, and glucose uptake overstimulation. This correlated with p70S6K inhibition and with a decrease in serine phosphorylation of IRS-1, indicating the inhibition of the negative feedback loop. We used the mTOR inhibitor rapamycin to confirm these results. Mimicking AMPK activators in the presence of insulin, rapamycin inhibited p70S6K and reduced IRS-1 phosphorylation on serine, resulting in the overphosphorylation of PKB/Akt and AS160. However, rapamycin did not enhance the insulin-induced stimulation of glucose uptake. In conclusion, although the insulin-sensitizing effect of AMPK on PKB/Akt is explained by the inhibition of the insulin-induced negative feedback loop, its effect on glucose uptake is independent of this mechanism. This disconnection revealed that the PKB/Akt/AS160 pathway does not seem to be the rate-limiting step in the control of glucose uptake under insulin treatment.  相似文献   

20.
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号