首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对一株BacilluspumilusWL_11木聚糖酶的纯化、酶学性质及其底物降解模式进行了研究。经过硫酸铵盐析、CM_Sephadex及SephadexG_75层析分离纯化,获得一种纯化的WL_11木聚糖酶A ,其分子量为2 6 0kD ,pI值9 5 ,以燕麦木聚糖为底物时的表观Km 值为16 6mg mL ,Vmax值为12 6 3μmol (min·mg)。木聚糖酶A的pH稳定范围为6 0至10 4 ,最适作用pH范围则在7 2至8 0之间,是耐碱性木聚糖酶;最适作用温度为4 5℃~5 5℃,在37℃、4 5℃以下时该酶热稳定性均较好;5 0℃保温时,该酶活力的半衰期大约为2h ,在超过5 0℃的环境下,该酶的热稳定较差,5 5℃和6 0℃时的酶活半衰期分别为35min和15min。WL_11木聚糖酶A对来源于燕麦、桦木和榉木的可溶性木聚糖的酶解结果发现,木聚糖酶A对几种不同来源的木聚糖的降解过程并不一致。采用HPLC法分析上述底物的降解产物生成过程发现木聚糖酶A为内切型木聚糖酶,不同底物的降解产物中都无单糖的积累,且三糖的积累量都较高;与禾本科的燕麦木聚糖底物降解不同的是,木聚糖酶A对硬木木聚糖降解形成的五糖的继续降解能力较强。采用TLC法分析了WL_11粗木聚糖酶降解燕麦木聚糖的过程,结果表明燕麦木聚糖能够被WL_11粗木聚糖酶降解生成系列木寡糖,未检出木糖,这说明WL_11主要合成内切型木聚  相似文献   

2.
从短小芽孢杆菌中克隆阿拉伯呋喃糖苷酶基因xyn43并重组表达,有利于将该酶分离纯化后应用于其他半纤维素多糖的水解。该研究利用E.coli BL21表达系统对实验室克隆到的短小芽孢杆菌的α-L-阿拉伯呋喃糖苷酶基因xyn43进行重组表达并分析其酶学性质,将重组α-L-阿拉伯呋喃糖苷酶Xyn43和来源于棒曲霉突变菌株的商业木聚糖酶联合作用于燕麦木聚糖。结果表明:以燕麦木聚糖为底物,重组α-L-阿拉伯呋喃糖苷酶Xyn43的最适温度为50℃,最适p H为6.0。该酶在p H 5.0~10.0和45~55℃下较稳定。与木聚糖酶单独作用相比,重组Xyn43酶与商业木聚糖酶同时加入以及先用木聚糖酶水解后加入Xyn43酶,水解产物中的还原糖含量分别增加了16%和20%,木糖含量增加了35%和48%。该结果研究结果表明重组Xyn43酶能够和商业木聚糖酶协同降解燕麦木聚糖,提高水解效率,产生更多的木寡糖,阿拉伯糖和木糖。  相似文献   

3.
嗜碱芽孢杆菌(Bacillus halodurans)C-125菌株的基因组中,一个编码木糖苷酶的基因(BH1068)被克隆并在大肠杆菌中获得高效表达。通过全面分析纯化蛋白,确证了它的木糖苷酶功能。该酶在pH4~9的范围内保持稳定,最适pH值为中性,有较宽的最适温度(35°C~45°C),且能在45°C范围内保持稳定。这些特性使得该酶可在较为宽广的条件下对木聚糖进行酶促降解。该酶对人工合成底物对硝基苯-β-木糖苷(p-nitrophenyl-β-xylose,pNPX)的比活力为174mU/mg蛋白质,且木糖对其反馈抑制较弱(抑制常数Ki为300mmol/L)。结果显示该酶是活性较高且较耐木糖抑制的细菌源木糖苷酶。该酶与商品化的木聚糖酶一起水解山毛举木聚糖(Beechwood xylan)时显示了增效作用,且水解率可获40%。该酶最适pH为中性,对木糖耐受等特性与大多数来源于真菌、最适pH为酸性、对木糖敏感的木糖苷酶将有较好的互补。结果表明该酶在木聚糖或含木聚糖多糖的单糖化过程可能发挥重要作用。  相似文献   

4.
旨在获得在低温条件下具有高催化能力的低温木糖苷酶,并对其进行异源表达研究和酶学性质分析。利用Touch down PCR和TAIL PCR方法,从枝顶孢菌中克隆得到一个序列新颖的GH43家族双功能木糖苷酶/阿拉伯呋喃糖苷酶基因ax543,该酶基因在毕赤酵母中成功表达。酶学性质分析发现重组酶AX543的最适温度为25℃,在15℃和4℃仍有54%和21%的相对酶活;具有木糖苷酶和阿拉伯呋喃糖苷酶活性,并可以降解木二糖、木三糖、桦木木聚糖、榉木木聚糖和小麦阿拉伯木聚糖;可以与木聚糖酶Xyn11-1协同作用,协同度达1.46;具有高木糖/阿拉伯糖耐受性,抑制常数Ki分别为84.78 mmol/L和54.01 mmol/L。  相似文献   

5.
厌氧真菌Neocallimastix frontalis是瘤胃中降解木聚糖和纤维素的主要微生物之一,其木聚糖酶具有潜在的应用价值。对来源于Neocallimastix frontalis木聚糖酶基因Xyn11B进行密码子优化;通过全基因合成优化后的木聚糖酶基因Xyn11Bm,构建该基因的酵母表达载体p PIC9K-Xyn11Bm,并在毕赤酵母GS115中诱导表达。摇瓶水平时,重组Xyn11Bm酶活性最高为4 874.8U/m L。在10 L发酵罐中诱导96 h后,重组Xyn11Bm的酶活性为5 139.7 U/m L,菌体湿重和干重达到216.7 g/L和117.3 g/L。酶学性质分析表明,重组Xyn11Bm的最适反应温度为50℃,最适反应p H为5.0。在p H5.0-8.0时该酶具有较好的稳定性,但温度稳定性较差。底物特异性分析表明,重组Xyn11Bm可水解燕麦木聚糖、桦木木聚糖和可溶性木聚糖4-O-Me-D-glucurono-D-xylan,但不降解地衣多糖和大麦β-葡聚糖。结果表明重组Xyn11Bm具有潜在的应用价值。  相似文献   

6.
本文对项青霉D_(1(?))的四个木聚糖酶组分的特性进行了研究。木聚糖酶组分D_(x1)、D_(x4)的最佳反应pH为4.8,最适温度分别为40℃和50℃,D_(x2)和D_(x3)的最适pH和温度都分别为pH4.2和50℃。Ag~(++)、Hg~(++),Cu~(++)对四个组分的活性均有强烈的抑制作用,SDS也能产生明显的抑制效果。Mn~(++)对D_(x1)具有促进作用。D_(x1)、D_(x4)在以燕麦木聚糖为底物时活性最高,其Km值分别为11.7(mg/ml)和8.3(mg/ml),D_(x2)和D_(x3)则分别在水解红麻杆木聚糖和落叶松木聚糖时活性最强,Km值分别为8.4(mg/ml)和6.3(mg/ml)。水解燕麦木聚糖,D_(x1)的产物主要为木糖,同时带有少量的低聚木糖。D_(x2)、D_(x3)和D_(x4)的产物则包括木糖和较多的低聚木糖。D_(x4)与D_(x2)及D_(x3)之间在水解燕麦木聚糖时存在协同作用关系。  相似文献   

7.
海枣曲霉木聚糖酶降解寡聚木糖的特性   总被引:4,自引:0,他引:4  
利用滤纸层析或AcrylexP-2凝胶过滤从落叶松木聚糖硫酸水解液中分离纯化子木二糖至木五糖。采用硅胶薄层层析分析底物和产物的方法研究了海枣霉木聚糖酶降解寡聚木糖的特点。此酶作用于寡糖的最适PH为5.0,终产物为X和X2。酶作用于X3、X4及X5的相对初速度分别为1、34和400,X2几乎不被酶解,推断该酶的底物结合部位至少具有5个亚位点,在高底物浓度,低酶量,远离最适PH以及在反应初期都能检测到  相似文献   

8.
筛选和鉴定可降解木质纤维素的真菌,并研究其产酶特征。采用刚果红平板涂布法,从荔枝腐叶中筛选具有木质纤维素降解能力的真菌,结合ITS-rDNA序列分析进行鉴定,初步测定其产酶条件,然后采用DEAE Sepharose Fast Flow阴离子交换层析与Sephadex G-100凝胶层析对硫酸铵沉淀的粗酶液进行分离纯化,对其开展酶学性质研究。结果显示,筛选出一株可降解木质纤维素降解的菌株YB,鉴定为绿木霉(Trichoderma virens)。在发酵过程中,纤维素酶和木聚糖酶的最大活力分别为313.53±26.78 U/mL和18 120.87±500.37 U/mL。分离纯化得到纤维素酶(CMC酶)Ⅰb、Ⅳ和木聚糖酶Ⅰa;通过SDS-PAGE检测,其分子量分别为58.5 kD、22.8 kD和44.5 kD。3种酶的最适酶促反应条件均为:50℃,pH 5.0。其中,木聚糖酶能有效降解玉米芯木聚糖为木糖和多种木寡糖。菌株Trichoderma virens YB可分泌高效木质纤维素降解酶,具有应用于木聚糖酶和木寡糖生产的潜力。  相似文献   

9.
海枣曲霉地衣多糖酶和木聚糖酶的底物特异性   总被引:2,自引:0,他引:2  
海枣曲霉木聚糖酶x—I、x—u和x一III作用于不同底物对,x_I对地衣多糖的水解活性最强,对麦麸半纤维素H和B也有一定的水解活性,因而该酶为具有木聚糖酶活性的地衣多糖酶(LichⅢe,l,3一l,4一卢一D—Glucan 4一glucnohydrolasc,Ec 3.2.1.73)。 X—II对燕麦木聚糖、麦麸半纤维素B和H均有很高的水解活性,对其他木聚糖及地衣多糖的水解活性也较高,因而为具有地衣多糖酶话性的木聚糖酶o x—Iil对落叶松木聚糖的水解活性最高,对其他木聚糖也有较高的水解话性,但不能水解地衣多糖等β一葡聚糖,故为一种专一的木聚糖酶。X一1水解麦麸半纤维素B、x一Ⅱ水解燕麦术聚糖及x—Iu承解落叶松木聚糖的Km值分别为9·9、2.1和1.8mg/ml。酶水解产物的纸层析分析结果表明,x—I水解不同木聚糖后的产物主要为分子量较大的寡聚木糖,未发现木二糖、木糖及阿拉伯糖。X_Il的水解产物主要为木二糖 及木二糖以上的寡糖,并有少量木糖和阿拉伯糖,且阿拉伯糖远多于木糖。X-III的水解产物中以木二糖为最多,也有较多的木二糖以上的寡聚木糖,木糖和阿拉伯糖的量较少,且阿拉伯糖远少于木糖。  相似文献   

10.
葛慧华  刘婷  杨纯  张光亚 《微生物学报》2023,63(8):3252-3263
【目的】β-1,4-木聚糖酶是木聚糖降解的关键酶之一,嗜冷嗜酸木聚糖酶在功能性低聚木糖的制备中具有重要作用,但相关报道较少。【方法】从太平洋火色杆菌(Flammeovirga pacifica)菌株WPAGA1基因组发掘到一条新型的木聚糖酶序列,经基因合成、质粒构建和表达,并对其进行分离纯化及酶学性质研究。【结果】该木聚糖酶(Xyl4513)具有2个保守结构域,一个属于糖苷水解酶11家族(glycoside hydrolase family 11,GH11)催化模块(Xyl4513-T),另一个属于碳水化合物结合模块(carbohydrate-binding module,CBM) 60家族(CBM4513),这是一种非常罕见的GH11家族木聚糖酶含有CBM的现象。纯化后的Xyl4513最适反应温度和pH值分别为30℃、3.0,这一特性说明Xyl4513为嗜冷嗜酸β-1,4-木聚糖酶;而截短的木聚糖酶Xyl4513-T最适反应温度和pH值分别为20℃、4.0,且催化效率(kcat/Km)较前者下降了20%,说明CBM4513对酶稳定性和催化效...  相似文献   

11.
葛慧华  刘婷  杨纯  张光亚 《微生物学报》1963,(收录汇总):3252-3263
【目的】β-1,4-木聚糖酶是木聚糖降解的关键酶之一,嗜冷嗜酸木聚糖酶在功能性低聚木糖的制备中具有重要作用,但相关报道较少。【方法】从太平洋火色杆菌(Flammeovirga pacifica)菌株WPAGA1基因组发掘到一条新型的木聚糖酶序列,经基因合成、质粒构建和表达,并对其进行分离纯化及酶学性质研究。【结果】该木聚糖酶(Xyl4513)具有2个保守结构域,一个属于糖苷水解酶11家族(glycoside hydrolase family 11,GH11)催化模块(Xyl4513-T),另一个属于碳水化合物结合模块(carbohydrate-binding module,CBM)60家族(CBM4513),这是一种非常罕见的GH11家族木聚糖酶含有CBM的现象。纯化后的Xyl4513最适反应温度和pH值分别为30℃、3.0,这一特性说明Xyl4513为嗜冷嗜酸β-1,4-木聚糖酶;而截短的木聚糖酶Xyl4513-T最适反应温度和pH值分别为20℃、4.0,且催化效率(kcat/Km)较前者下降了20%,说明CBM4513对酶稳定性和催化效率有较大影响。Ca^(2+)、Mg2+和Ni2+对酶催化活性均有明显促进作用,其中Ca^(2+)效果更为明显。仅当含有Ca^(2+)时,CBM4513才对β-1,4-木聚糖具有特异性结合能力,属于Ca^(2+)依赖型CBM,其最大结合量为9.13μmol/g。【结论】本文获得了一种新型的嗜冷嗜酸木聚糖酶和相应的Ca^(2+)依赖型CBM,进一步丰富了它们的基因和蛋白资源。  相似文献   

12.
【目的】了解牦牛瘤胃微生物木聚糖酶多样性及其降解特征,为木聚糖降解提供新的基因资源。【方法】根据对已构建的瘤胃微生物元基因组细菌人工染色体(BAC)克隆文库高通量测序结果的注释,筛选其中编码木聚糖酶的基因并进行多样性分析;对其中一个木聚糖酶基因及其连锁的木糖苷酶基因进行克隆表达和酶学性质表征,分析其协同作用。【结果】共筛选到14个木聚糖酶基因,均编码GH10家族木聚糖酶,其氨基酸序列之间的相似性为20.5%-91.3%;其中7个木聚糖酶基因所在的不同的DNA片段(contig)上存在木糖苷酶基因,编码的木糖苷酶属于GH43或GH3糖苷水解酶家族。将其中一对连锁的木聚糖酶(Xyn32)和木糖苷酶基因(Xyl33)分别克隆、表达和纯化。纯化后的木聚糖酶比活为1.98 IU/mg,但不具有阿魏酸酯酶活性;木糖苷酶比活为0.07 U/mg,且具有α-阿拉伯呋喃糖苷酶活性。体外实验证明,木糖苷酶Xyl33对与之连锁的木聚糖酶Xyn32的木聚糖降解具有协同作用。  相似文献   

13.
嗜热真菌耐热木聚糖酶的产酶条件和酶谱分析*   总被引:13,自引:0,他引:13  
嗜热真菌Thermomyces lanuginosus CBS288.54-M18耐热木聚糖酶的产酶条件和酶谱分析结果表明:玉米芯水不溶木聚糖相对于其它来源木聚糖为最佳碳源,而酵母提取物和蛋白胨作为复合氮源时效果最好。培养基最适初始pH值为7.0,最适培养温度为50℃。在最适条件下发酵所产木聚糖酶活力最高达1.834u/mL。另外,SDS-PAGE和酶谱分析(变性和非变性状态下)结果都表明该菌只产生一种分子量约为26kD的G/11族木聚糖酶。  相似文献   

14.
嗜热脂肪芽孢杆菌耐热木糖异构酶的特性   总被引:4,自引:0,他引:4  
嗜热脂肪芽抱杆菌在木糖或木聚糖诱导下产生木糖异构酶。从破碎细胞中分离到该酶。经硫酸铵沉淀,热处理及SephadexG-200柱层析等步骤获得纯化了19倍的酶制备物。该酶反应的最适pH值为7.5,在pH6.2~8.0范围内稳定,最适反应温度为80℃,低于此温度时酶有很好稳定性。该酶对底物木糖的Km值为6.67mmol/L,Mg2+、Co2+和Mn2+对该酶有激活作用,而Zn2+、Cu2+和Fe相似文献   

15.
链霉菌Strz-6木聚糖酶的纯化和固定化研究   总被引:3,自引:0,他引:3  
链霉菌胞外木聚糖酶经过盐析、离子交换和分子筛层析纯化,粗酶液被纯化了32.5倍,比活力达498u/mg,活力回收46.6%。纯化后的酶固定在戊二醛交联的壳聚糖上,酶活回收率为42.8%。固定化酶的最适pH为6.0,最适温度为60℃,且固定化酶在65~75℃活力都较高。该酶的耐热性比较强,固定化酶热稳定性优于原酶;以木聚糖为底物,固定化酶的表观米氏常数为0.93×10-2g/L。  相似文献   

16.
木聚糖酶的分子生物学及其应用   总被引:37,自引:0,他引:37  
木聚糖是一种多聚五碳糖,是植物细胞中的主要半纤维素成分,木聚糖酶是可将木聚糖降解成低聚木糖和木糖的复合酶系,综述了木聚糖酶分子生物学上的研究进展及其在饲料,造纸,食品,能源工业上的应用。  相似文献   

17.
从造纸废水中分离得到的耐碱真菌Pseudallescheria sp. JSM-2的DNA为模板,利用同源克隆和TAIL-PCR的方法,获得了一个碱性木聚糖酶基因xyl11-1。该基因DNA和cDNA分别为797 bp和678 bp。该基因的推测蛋白N-端有一个18个氨基酸的信号肽序列和一个含207个氨基酸的成熟蛋白。编码成熟蛋白的cDNA序列在毕赤酵母GS115中重组表达后,进一步纯化并进行酶学性质测定。重组XYL11-1的最适pH为6.5,在pH 4.5~9.0范围有50%以上的酶活;在pH 4.5~12.0范围具有良好的pH稳定性;最适温度为50℃;以燕麦木聚糖为底物,比活为2 618 U/mg;且对中性和碱性蛋白酶具有极好的抗性。该酶作用底物范围广,包括各种木聚糖、纤维素和葡聚糖,易于工业化发酵生产,具有在纸浆脱墨、动物饲料、鱼类饵料中的应用潜力。  相似文献   

18.
木聚糖酶分子结构与重要酶学性质关系的研究进展   总被引:10,自引:0,他引:10  
木聚糖是一种多聚五碳糖 ,是植物细胞中主要的半纤维素成分。木聚糖酶是可将木聚糖降解成低聚木糖和木糖的水解酶 ,它在饲料、造纸、食品、能源工业和环境科学上有着广阔的应用前景。随着分子生物学、结构生物学的发展及蛋白质工程的应用 ,对木聚糖酶结构和功能的研究不断深入。这里重点阐述与酶的活性、热稳定性、作用pH、等电点、底物亲和性及催化效率等重要性质相关的分子结构研究进展 ,讨论了其进一步的研究发展方向。研究木聚糖酶结构与功能的关系 ,对进一步加深木聚糖酶作用机制的了解、指导木聚糖酶的分子改良有重要意义。  相似文献   

19.
以Azo-xylan为底物,利用双层平板法从堆肥中筛选到可降解木聚糖的菌株,16S rRNA测序分析显示该菌株与糖丝菌属(Saccharothrix variisporea)的同源性最高(99.33%),命名为S. variisporea YJ。研究发现以酵母提取物或(NH4)2SO4作为氮源、甘蔗叶作为碳源、初始pH值 7.0、发酵温度40 ℃、发酵时间5 d时,发酵液中木聚糖酶的酶活性最高。酶学性质研究表明该木聚糖酶的最适反应温度及pH值分别为55 ℃和8.0,在55 ℃以下及pH值 4.0~10.0的范围内保持较高稳定性。Na+能有效提高木聚糖酶活性,Mg2+和Mn2+没有明显影响,Cu2+则严重抑制木聚糖酶活性。此外,发酵液还可以直接对天然底物玉米芯进行降解。  相似文献   

20.
目的:检测由中国新分离碱性耐热芽孢杆菌[1]产生的粗木聚糖酶的酶活。方法:通过DNS法测定粗木聚糖酶的酶活。结果:实验表明,以橡树木聚糖为底物培养的新分离菌株在30-50℃处理2h酶活不丧失。其中,XJU-1菌株在60、70和80℃时粗酶酶活分别丧失是最初酶活的1.54%、19.09%和72.59%;而XJU-80的粗酶酶活分别是3.59%、26.43%和72.59%。两个菌株产生的粗木聚糖酶的最适pH是7.5-8.0。将该粗酶在pH 7.0-9.0(50℃)处理24h后,酶活几乎均降低最初酶活的18%。结论:由XJU-1和XJU-80产生的木聚糖酶是生化领域有用的嗜碱耐热酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号