首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达   总被引:43,自引:0,他引:43  
Betaine aldehyde dehydrogenase (BADH) cDNA cloned from Atriplex hortensis L. in the plasmid pABH9 containing maize ubiquitin promoter and bar gene was transferred into wheat (Triticum aestivum L.) by microprojectile bombardment with 4.1% of average frequency of transformation. From 300 young embryo calli bombarded with the plasmid, 24 transgenic plants were obtained showing BADH gene integration by both PCR and Southern blotting analysis. Among the 24 transgenic plants, 13 exhibited higher BADH activity than the control. Some transgenic plants grew normally with healthy roots on the medium containing 0.7% NaCl while the control plants had very poor roots and finally died.  相似文献   

2.
3.
甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达   总被引:16,自引:1,他引:15  
采用基因枪法将山菠菜甜菜碱醛脱氢酶 (BADH)基因导入小麦 (TriticumaestivumL .)品种 ,并且得以表达。该基因由玉米Ubi1启动子控制。在盐胁迫条件下 ,多数转基因植株叶片的BADH活性比受体亲本提高 1~ 3倍 ,部分植株相对电导率比亲本明显低 ,表明转基因植株的细胞膜在胁迫时有受损较轻倾向。PCR和Southern杂交分析证实外源BADH基因已插入小麦基因组 ,平均转化频率为 4.1%。  相似文献   

4.
Betaine aldehyde dehydrogenase (BADH) is a major oxidative enzyme that converts betaine aldehyde to glycine betaine (GB), an osmoprotectant compound in plants. Japonica rice (salt-sensitive) was genetically engineered to enhance salt tolerance by introducing the OsBADH1 gene from Indica rice (salt-tolerant), which is a GB accumulator. We produced transgenic rice plants overexpressing the modified OsBADH1 gene under the control of the maize ubiquitin promoter. The transgenic rice showed increased OsBADH1 gene expression and OsBADH1 enzyme production, resulting in the accumulation of GB. It also exhibited enhanced salt tolerance in immature and mature transgenic rice seedlings. The adverse effect of salt stress on seed germination, the growth of immature and mature seedlings, water status, and photosynthetic pigments was alleviated in transgenic seedlings.  相似文献   

5.
通过农杆菌介导法获得耐盐转甜菜碱醛脱氢酶基因白三叶草   总被引:21,自引:0,他引:21  
通过农杆菌介导法将耐盐植物山菠菜甜菜碱醛脱氢酶(Betaine Aldehyde Dehydrogenase,BADH)基因成功地转化了白三叶草。转基因植株在经过48h 1%NaCl胁迫后相对电导率为20%左右,而非转基因植株高达40%,表明转基因植株细胞膜在盐胁迫下受到的伤害较非转基因的轻,并且转基因植株能够在含有0.5%NaCl的水培养中正常生长两周以上,而非转基因植株则呈现不正常生长。  相似文献   

6.
菠菜甜菜碱醛脱氢酶基因在烟草中的表达   总被引:74,自引:0,他引:74  
质粒pLS9含有1.5kb的编码菠菜甜菜碱醛脱氢酶(BADH)基因。经限制酶切后克隆到植物表达载体的35S启动子和PolyA终止子之间。经农杆菌介导转化烟草,获得90多株抗卡那霉素再生植株。经PCR检测证明60%以上再生植株含有BADH基因。转基因植株经Western blot,BADH酶活性测定,BADH酶活性特异性染色法检查和耐盐性分析,证明菠菜BADH基因在烟草正常表达。在叶绿体和胞液中均有BADH酶存在。转基因植株能耐较高浓度盐。  相似文献   

7.
转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性   总被引:11,自引:0,他引:11  
  相似文献   

8.
农杆菌介导的甜菜碱醛脱氢酶基因转化甘蓝的研究   总被引:1,自引:0,他引:1  
为获得抗旱和耐盐性提高的甘蓝植株,通过农杆菌介导法将来自菠菜的甜菜碱醛脱氢酶(Betaine Aldehyde Dehydrogenase,BADH)基因导人甘蓝品系03079,并采用正交设计优化影响转化效率的参数,建立了甘蓝高效转化体系,即以侵染液为AA液体培养基、乙酰丁香酮200μmol L^-1、侵染时间20min、共培养天数2d为最佳转化参数,在该条件下转化率可达54.26%。转基因甘蓝植株经PCR检测初步说明BADH基因已导入甘蓝中,Southern杂交证明BADH基因已稳定整合到甘蓝基因组中。甜菜碱脱氢酶活性测定结果表明,经过聚乙二醇(PEG)、NaCI和干旱处理的转基因甘蓝植株的BADH酶的平均比活力范围在2.1Umg^-1~3.6Umg^-1之间,不同处理的转基因株系酶比活力显著高于相应的未转基因株系。膜的相对电导率测定结果说明,经过PEG、NaCl和干旱处理的转基因植株平均相对电导率在16.2%~32.6%之间,耐逆境胁迫处理后的绝大多数转基因株系相对电导率显著低于相应对照。多数转BADH基因甘蓝植株在干旱、盐胁迫和PEG胁迫条件下生长势强于未转基因植株,表现为大多数转基因株系株高增幅显著高于对照,说明BADH基因的导入能提高转基因甘蓝植株的抗旱和耐盐性。我们获得的抗旱和耐盐能力明显提高的转基因甘蓝植株,可作为培育耐盐、抗旱甘蓝品种的种质材料。  相似文献   

9.
10.
Drought and salinity are the most important abiotic stresses that affect the normal growth and development of plants. Glycine betaine is one of the most important osmolytes present in higher plants that enable them to cope with environmental stresses through osmotic adjustment. In this study, a betaine aldehyde dehydrogenase (BADH) gene from spinach under the control of the stress-induced promoter rd29A from Arabidopsis thaliana was introduced into potato cultivar Gannongshu 2 by the Agrobacterium tumefaciens system. Putative transgenic plants were confirmed by Southern blot analysis. Northern hybridization analysis demonstrated that expression of BADH gene was induced by drought and NaCl stress in the transgenic potato plants. The BADH activity in the transgenic potato plants was between 10.8 and 11.7 U. There was a negative relationship (y = −2.2083x + 43.329, r = 0.9495) between BADH activity and the relative electrical conductivity of the transgenic potato plant leaves. Plant height increased by 0.4–0.9 cm and fresh weight per plant increased by 17–29% for the transgenic potato plants under NaCl and polyethylene glycol stresses compared with the control potato plants. These results indicated that the ability of transgenic plants to tolerate drought and salt was increased when their BADH activity was increased.  相似文献   

11.
Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline betaine aldehyde glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and K m for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.Abbreviations BADH betaine aldehyde dehydrogenase - bp base pairs - FAB-MS fast atom bombardment-mass spectrometry - GAPDH NADP-linked glyceraldehyde-3-phosphate dehydrogenase We thank Dr. G. An for the gift of the vector pGA643 and Mr. Sylvain Lebeurier for help in maintaining plants. This work was supported, in part, by grants from the Natural Sciences and Engineering Research Council of Canada, the Rockefeller Foundation, and the U.S. Department of Agriculture, and by gifts from CIBAGEIGY Biotechnology.  相似文献   

12.
CMO与BADH双基因表达载体构建及在烟草中的表达   总被引:5,自引:0,他引:5  
本研究的目的是将甜菜碱合成关键酶CMO与BADH基因构建到同一表达载体中,利用转基因方法将该表达载体导入植物体内,完善植物体内的甜菜碱合成途径,提高植物的抗旱性和耐盐性。以pC1303质粒为基础,构建了均由35S启动子驱动的CMO基因和BADH基因的植物双基因表达载体pC35SC35SB1303。利用冻融法将其导入农杆菌LBA4404中,通过农杆菌介导法分别将CMO基因、BADH基因以及该双基因表达载体导入烟草中,PCR检测和Northern杂交分析表明,外源基因已整合到受体植物基因组中并正常表达。对转基因植株及对照植株甜菜碱含量的检测结果表明,转双基因植株的甜菜碱含量明显高于转BADH基因植株、转CMO基因植株及对照植株。  相似文献   

13.
Glycinebetaine is an important quaternary ammonium compound generated in response to salt and other osmotic stresses in many organisms. Its synthesis requires the catalysis of betaine aldehyde dehydrogenase encoded by a Betaine Aldehyde Dehydrogenase (BADH) gene that converts betaine aldehyde into glycinebetaine in some halotolerant plants. In this study, a BADH gene was over expressed in transgenic alfalfa (Medicago sativa L) plants using Agrobacterium-mediated transformation. Transgenic alfalfa plants grown under 9‰ NaCl grew well; while non-transgenic control plants turned yellowish in color, wilted, and eventually died. Polymerase chain reaction (PCR) and Northern blot hybridization analyses demonstrated that the BADH gene was transferred into the T2 generation and segregated in a Mendelian fashion. Transgenic alfalfa plants expressing BADH showed significantly higher BADH enzyme activity and betaine contents when grown under 6‰ NaCl. Moreover, proline content in T2 lines were higher while electrolyte leakage and malonaldehyde content were lower in T2 lines compared with non-transgenic plants. These findings indicated that transgenic plants expressing BADH transgene exhibited higher salt tolerance than non-transgenic plants.  相似文献   

14.
Betaine aldehyde dehydrogenase in plants   总被引:2,自引:0,他引:2  
Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo , and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties.  相似文献   

15.
甜菜碱是一种非毒性的渗透调节剂。多种高等植物在盐碱或缺水的环境下在细胞中积累甜菜碱 ,以维持细胞的正常膨压。甜菜碱的积累使得许多代谢中的重要酶类在渗透胁迫下能保持活性。在植物中甜菜碱由胆碱经两步氧化得到 ,催化第一步反应的酶是胆碱单加氧酶 (CMO) ,催化第二步反应的酶是甜菜碱醛脱氢酶 (BADH)。本文综述了这两种酶的分子生物学及基因工程研究的最新进展 ,讨论了其基因工程研究的意义。  相似文献   

16.
转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量   总被引:27,自引:0,他引:27  
为提高我国稻米的铁含量,通过农杆菌介导将自行克隆的菜豆(Phaseolus limensis)铁结合蛋白(Ferritin)基因导入了一个高产粳稻(Oryaz sativa L.ssp.japonuica)品种中,获得17个独立的转基因水稻株系。分子检测证明,外源基因在多数转基因水稻植株基因组中有1~3个整合位点,并可稳定遗传。在水稻种子贮存蛋白谷蛋白基因GluB-1启动子的控制下,铁结合蛋白基因可在转基因水稻的种子中高效特异地表达,不同转化子中的表达量有明显不同。在转基因水稻种子中表达铁结合蛋白后对提高精米中的铁含量有明显的效果,相对于未转化对照最多可提高64%,而锌的含量并无明显变化。  相似文献   

17.
The responses of five transgenic tomato (Lycopersicon esculentum Mill) lines containing the betaine aldehyde dehydrogenase (BADH) gene to salt stress were evaluated. Proline, betaine (N, N, N-trimethylglycine, hereafter betalne), chlorophyll and ion contents, BADH activity, electrolyte leakage (EL), and some growth parameters of the plants under 1.0% and 1.5% NaCl treatments were examined. The transgenic tomatoes had enhanced BADH activity and betaine content, compared to the wild type under stress conditions. Salt stress reduced chlorophyll contents to s higher extent in the wild type than in the transgenic plants. The wild type exhibited significantly higher proline content than the transgenic plants at 0.9% and 1.3% NaCh Cell membrane of the wild type was severely damaged as determined by higher EL under salinity stress. K^+ and Ca^2+ contents of all tested lines decreased under salt stress, but the transgenic plants showed a significantly higher accumulation of K^+ and Ca^2+ than the wild type. In contrast, the wild type had significantly higher CI- and Na^2+ contents than the transgenic plants under salt stress. Although yield reduction among various lines varied, the wild type had the highest yield reduction. Fruit quality of the transgenic plants was better in comparison with the wild type as shown by a low ratio of blossom end rot fruits. The results show that the transgenic plants have improved salt tolerance over the wild type.  相似文献   

18.
Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ1-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.  相似文献   

19.
Betaine aldehyde dehydrogenase (BADH) is a key enzyme involved in the synthesis of glycinebetaine—a powerful osmoprotectant against salt and drought stress in a large number of species. Rice is not known to accumulate glycinebetaine but it has two functional genes coding for the BADH enzyme. A non-functional allele of the BADH2 gene located on chromosome 8 is a major factor associated with rice aroma. However, similar information is not available regarding the BADH1 gene located on chromosome 4 despite the similar biochemical function of the two genes. Here we report on the discovery and validation of SNPs in the BADH1 gene by re-sequencing of diverse rice varieties differing in aroma and salt tolerance. There were 17 SNPs in introns with an average density of one per 171 bp, but only three SNPs in exons at a density of one per 505 bp. Each of the three exonic SNPs led to changes in amino acids with functional significance. Multiplex SNP assays were used for genotyping of 127 diverse rice varieties and landraces. In total 15 SNP haplotypes were identified but only four of these, corresponding to two protein haplotypes, were common, representing more than 85% of the cultivars. Determination of population structure using 54 random SNPs classified the varieties into two groups broadly corresponding to indica and japonica cultivar groups, aromatic varieties clustering with the japonica group. There was no association between salt tolerance and the common BADH1 haplotypes, but aromatic varieties showed specific association with a BADH1 protein haplotype (PH2) having lysine144 to asparagine144 and lysine345 to glutamine345 substitutions. Protein modeling and ligand docking studies show that these two substitutions lead to reduction in the substrate binding capacity of the BADH1 enzyme towards gamma-aminobutyraldehyde (GABald), which is a precursor of the major aroma compound 2-acetyl-1-pyrroline (2-AP). This association requires further validation in segregating populations for potential utilization in the rice breeding programs.  相似文献   

20.
BACKGROUND AND AIMS: Glycinebetaine (GB), a quaternary ammonium compound, is a very effective compatible solute. In higher plants, GB is synthesized from choline (Cho) via betaine aldehyde (BA). The first and second steps in the biosynthesis of GB are catalysed by choline monooxygenase (CMO) and by betaine aldehyde dehydrogenase (BADH), respectively. Rice (Oryza sativa), which has two genes for BADH, does not accumulate GB because it lacks a functional gene for CMO. Rice plants accumulate GB in the presence of exogenously applied BA, which leads to the development of a significant tolerance to salt, cold and heat stress. The goal in this study was to evaluate and to discuss the effects of endogenously accumulated GB in rice. METHODS: Transgenic rice plants that overexpressed a gene for CMO from spinach (Spinacia oleracea) were produced by Agrobacterium-mediated transformation. After Southern and western blotting analysis, GB in rice leaves was quantified by (1)H-NMR spectroscopy and the tolerance of GB-accumulating plants to abiotic stress was investigated. KEY RESULTS: Transgenic plants that had a single copy of the transgene and expressed spinach CMO accumulated GB at the level of 0.29-0.43 micromol g(-1) d. wt and had enhanced tolerance to salt stress and temperature stress in the seedling stage. CONCLUSIONS: In the CMO-expressing rice plants, the localization of spinach CMO and of endogenous BADHs might be different and/or the catalytic activity of spinach CMO in rice plants might be lower than it is in spinach. These possibilities might explain the low levels of GB in the transgenic rice plants. It was concluded that CMO-expressing rice plants were not effective for accumulation of GB and improvement of productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号