首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
菠菜甜菜碱醛脱氢酶基因的克隆和序列分析   总被引:7,自引:0,他引:7  
以耐盐的菠菜mRNA为模板,经反转录合成甜菜碱醛脱氢酶(BADH)基因第一链cDNA。在人工合成的两端引物引导下,通过多聚酶链式反应(PCR),扩增获得双链cDNA。把重组有BADH基因的pUC19转化至E.coli DH5α菌株,亚克隆后测定了基因的全序列。所得到的BADH基因全长序列为1491bp,编码497个氨基酸。与文献报道的相比较,核苷酸序列同源性99.8%,氨基酸序列同源性达99.6%。在此基础上,构建了BADH基因的高等植物表达载体。  相似文献   

2.
Glycinebetaine is synthesized in plants by the two‐step oxidation of choline, with betaine aldehyde as the intermediate. The reactions are catalyzed by choline mono‐oxygenase and betaine aldehyde dehydrogenase. Rice plants, which do not accumulate glycinebetaine, possess a gene encoding betaine aldehyde dehydrogenase, whose activity is detectable at low levels. To evaluate the compatibility in rice of glycinebetaine on growth and tolerance to salt, cold and heat, we produced transgenic rice plants by introduction of a cDNA for betaine aldehyde dehydrogenase of barley, which is localized in peroxisomes unlike the chloroplast‐specific localization of betaine aldehyde dehydrogenase in spinach and sugar beet. The transgenic rice plants converted high levels of exogenously applied betaine aldehyde (up to 10 mol m–3) to glycinebetaine more efficiently than did wild‐type plants. The elevated level of glycinebetaine in transgenic plants conferred significant tolerance to salt, cold and heat stress. However, very high levels of glycinebetaine, resulting from conversion of applied betaine aldehyde to glycinebetaine or from exogenous application, inhibited increases in length of rice plants but not increases in dry weight. Our results suggested that the benefits of accumulation of glycinebetaine by rice plants might be considerable under high light conditions.  相似文献   

3.
4.
菠菜甜菜碱醛脱氢酶基因在烟草中的表达   总被引:74,自引:0,他引:74  
质粒pLS9含有1.5kb的编码菠菜甜菜碱醛脱氢酶(BADH)基因。经限制酶切后克隆到植物表达载体的35S启动子和PolyA终止子之间。经农杆菌介导转化烟草,获得90多株抗卡那霉素再生植株。经PCR检测证明60%以上再生植株含有BADH基因。转基因植株经Western blot,BADH酶活性测定,BADH酶活性特异性染色法检查和耐盐性分析,证明菠菜BADH基因在烟草正常表达。在叶绿体和胞液中均有BADH酶存在。转基因植株能耐较高浓度盐。  相似文献   

5.
利用PCR、RT—PCR和PCR—RACE技术,从菊科植物甘菊(Dendranthema lavandulifolium)中克隆到2个甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase,BADH)基因的同源基因,分别命名为DlBADH1和DlBADH2,GenBank登录号分别为DQ011151和DQ011152。DlBADH1的cDNA全长1821bp,其开放阅读框编码503个氨基酸的蛋白质;DlBADH2全长1918bp,编码506个氨基酸的蛋白质。两个基因核苷酸序列的同源性为97%,推导的氨基酸序列的同源性为98%。与已发表的其它植物BADH基因氨基酸序列的同源性在64%以上。在推导的氨基酸序列中,均含有醛脱氢酶所具有的高度保守的十肽(VTLELGGKSP)以及与酶功能有关的半胱氨酸残基(C)。在推导的氨基酸序列的系统关系中,甘菊位于其它双子叶植物和单子叶植物之间,与其植物分类的系统关系相吻合。RT—PCR—Southern半定量表达分析表明,甘菊BADH基因家族中存在表达受盐诱导的成员。  相似文献   

6.
Members of the Chenopodiaceae, such as sugar beet and spinach, accumulate glycine betaine in response to salinity or drought stress. The last enzyme in the glycine betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). In sugar beet the activity of BADH was found to increase two- to four-fold in both leaves and roots as the NaCl level in the irrigation solution was raised from 0 to 500 mM. This increase in BADH activity was paralleled by an increase in level of translatable BADH mRNA. Several cDNAs encoding BADH were cloned from a gt10 libary representing poly(A)+ RNA from salinized leaves of sugar beet plants, by hybridization with a spinach BADH cDNA. Three nearly full-length cDNA clones were confirmed to encode BADH by their nucleotide and deduced amino acid sequence identity to spinach BADH; these clones showed minor nucleotide sequence differences consistent with their being of two different BADH alleles. The clones averaged 1.7 kb and contained an open reading frame predicting a polypeptide of 500 amino acids with 83% identity to spinach BADH. RNA gel blot analysis of total RNA showed that salinization to 500 mM NaCl increased BADH mRNA levels four-fold in leaves and three-fold in the taproot. DNA gel blot analyses indicated the presence of at least two copies of BADH in the haploid sugar beet genome.  相似文献   

7.
8.
根据已发表的几种植物的甜菜碱醛脱氢酶(BADH)基因的同源保守区设计了一对兼并引物,通过RT-PCR方法从中亚滨藜中扩增出BADH基因的近5′端序列,共395bp,与菠菜、山菠菜、甜菜、千穗谷、大麦的BADHcDNA相应片段的同源性较高。以此片段为探针,对中亚滨藜的基因组进行Southern杂交分析,证明该基因可能是单拷贝的。Northern印迹杂交结果表明NaCl250mmol/L处理的植株的BADHmRNA水平比对照植株约高2倍,说明中亚滨藜中BADH基因的表达受盐诱导。  相似文献   

9.
梭梭甜菜碱醛脱氢酶基因克隆及序列分析   总被引:4,自引:1,他引:3  
采用RT-PCR、RACE等方法从超旱生、耐盐植物梭梭(Haloxylon ammodendron)中扩增出BADH基因的cDNA序列(命名为HaBADH),其开放阅读框为1 503 bp,推测的氨基酸序列全长为500个氨基酸残基,并含有醛脱氢酶所具有的高度保守的十肽(VTLELGGKSP)以及与酶功能有关的半胱氨酸残基(C).其核苷酸序列与藜科几种盐生植物如盐爪爪(Kalidium foliatum)、中亚滨藜(Atriplex centralasiatica)、三角叶滨藜(Atriplex triangularis)、菠菜(Spinacia oleracea)、山菠菜(Atriplex hortensis)和甜菜(Beta vulgaris)等的相似性均在85%以上,推导编码蛋白的氨基酸序列一致性均在87%以上,表明BADH基因在藜科植物中是一种比较保守的基因.研究结果为进一步从分子水平探明梭梭的抗旱、耐盐机制,挖掘并利用植物抗逆基因奠定基础.  相似文献   

10.
11.
We isolated cDNAs encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) from the salt-tolerant Poaceae, Zoysia tenuifolia by polymerase chain reactions. Zoysia betaine aldehyde dehydrogenase 1 (ZBD1) is 1892bp long and codes for 507 amino acids. The deduced amino acid sequence of ZBD1 is 88% similar to the sequence of rice BADH. Ten cDNA clones were isolated from a cDNA Library of salt-treated Z. tenuifolia by using the ZBD1 fragment as a probe. The proteins coded in some clones were more homologous to BBD2, the cytosolic BADH of barley, than to ZBD1. To investigate their enzymatic properties, ZBD1 and spinach BADH were expressed in Escherichia coli and purified. The optimal pH of ZBD1 was 9.5, which was more alkaline than that of spinach BADH. ZBD1 was less tolerant to NaCl than spinach BADH. ZBD1 showed not only BADH activity but also aminoaldehyde dehydrogenase activity. The Km values of ZBD1 for betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde (AP-ald) were 291, 49, and 4.0 microM, respectively. ZBD1 showed higher specific activities for AB-ald and AP-ald than did spinach BADH.  相似文献   

12.
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley ( Hordeum vulgare L.), we reported previously the existence of two BADH genes ( BBD1 and BBD2 ) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent Km of 18.9 μ M and 19.9 m M , respectively. In addition, Vmax/Km with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of ω-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4- N -trimethylaminobutyraldehyde and 3- N -trimethylaminopropionaldehyde.  相似文献   

13.
根据已发表的几种藜科植物甜菜碱醛脱氢酶(BADH)基因的同源保守区设计了一对引物,采用RT-PCR方法从盐生植物盐爪爪(Kalidium foliatum)中扩增出BADH基因的1个开放阅读框架,其核苷酸序列长1503bp,推测的氨基酸序列全长为500个氨基酸残基。核苷酸序列与藜科几种盐生植物如滨藜、碱蓬、菠菜、山菠菜和甜菜等的同源性为81%,与甜土植物水稻的同源性为69%。氨基酸序列与以上两类植物(盐生植物和甜土植物)的同源性比对为80%和71%,说明BADH基因在藜科盐生植物中是一种较高保守的基因。BADH基因编码的多肽在高等植物中行使重要的功能。用不同浓度的NaCl胁迫处理盐爪爪植株,BADHmRNA的表达水平比对照植株高,说明盐爪爪BADH基因的表达受盐诱导,间接说明甜菜碱醛脱氢酶催化合成的甜菜碱作为渗透调节的小分子物质,它的积累与盐胁迫存在紧密关联,本研究为进一步从生理和分子水平阐明盐爪爪的耐盐机制提供一定的参考。  相似文献   

14.
Betaine as one of osmolytes plays an important role in osmoregulation of most high plants. Betaine aldehyde dehydrogenase C BADH) is the second enzyme involved in betaine biosynthesis. The BADH gene from a halophite, Atriplex hortensis, was transformed into rice cultivars by bombarment method. Totally 192 transgenic rice plants were obtained and most of them had higher salt tolerance than controls. Among transgenic plants transplanted in the saline pool containing 0.5% NaCl in a greenhouse, 22 survived, 13 of which set seeds, and the frequency of seed setting was very low, only 10% . But the controls could not grow under the same condition. The results of BADH ac-tivity assay and Northern blot showed that the BADH gene was integrated into chromosomes of transgenic plants and expressed.  相似文献   

15.
甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达   总被引:43,自引:0,他引:43  
Betaine aldehyde dehydrogenase (BADH) cDNA cloned from Atriplex hortensis L. in the plasmid pABH9 containing maize ubiquitin promoter and bar gene was transferred into wheat (Triticum aestivum L.) by microprojectile bombardment with 4.1% of average frequency of transformation. From 300 young embryo calli bombarded with the plasmid, 24 transgenic plants were obtained showing BADH gene integration by both PCR and Southern blotting analysis. Among the 24 transgenic plants, 13 exhibited higher BADH activity than the control. Some transgenic plants grew normally with healthy roots on the medium containing 0.7% NaCl while the control plants had very poor roots and finally died.  相似文献   

16.
Yang X  Liang Z  Lu C 《Plant physiology》2005,138(4):2299-2309
Genetically engineered tobacco (Nicotiana tabacum) with the ability to synthesis glycinebetaine was established by introducing the BADH gene for betaine aldehyde dehydrogenase from spinach (Spinacia oleracea). The genetic engineering enabled the plants to accumulate glycinebetaine mainly in chloroplasts and resulted in enhanced tolerance to high temperature stress during growth of young seedlings. Moreover, CO2 assimilation of transgenic plants was significantly more tolerant to high temperatures than that of wild-type plants. The analyses of chlorophyll fluorescence and the activation of Rubisco indicated that the enhancement of photosynthesis to high temperatures was not related to the function of photosystem II but to the Rubisco activase-mediated activation of Rubisco. Western-blotting analyses showed that high temperature stress led to the association of Rubisco activase with the thylakoid membranes from the stroma fractions. However, such an association was much more pronounced in wild-type plants than in transgenic plants. The results in this study suggest that under high temperature stress, glycinebetaine maintains the activation of Rubisco by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble stroma fractions and thus enhances the tolerance of CO2 assimilation to high temperature stress. The results seem to suggest that engineering of the biosynthesis of glycinebetaine by transformation with the BADH gene might be an effective method for enhancing high temperature tolerance of plants.  相似文献   

17.
Glycinebetaine is an important quaternary ammonium compound that is produced in response to salt and other osmotic stresses in many organisms. Its synthesis requires the catalysis of betaine aldehyde dehydrogenase encoded by BADH gene that converts betaine aldehyde into glycinebetaine in some halotolerant plants. We transformed the BADH gene, cloned from Atriplex hortensis and controlled by two 35S promoters of the cauliflower mosaic virus, into a salt-sensitive tomato cultivar, Bailichun, using Agrobacterium tumefaciens strain LBA4404 carrying a binary vector pBin438, and using a leaf regeneration system. Polymerase chain reaction and Southern hybridization analyses demonstrated that the BADH gene had integrated into the genome of tomato. Transgenic tomato plants showed significantly higher levels of mRNA and BADH enzyme activity than wild-type plants. Observations on rooting development and relative electronic conductivity suggested that the transgenic plants exhibited tolerance to salt stress, with these plants growing normally at salt concentrations up to 120 mM.  相似文献   

18.
根据已发表的几种藜科植物甜菜碱醛脱氢酶(BADH) 基因的同源保守区设计了一对引物, 采用RT-PCR 方法从盐生植物盐爪爪( Kalidium foliatum) 中扩增出BADH 基因的1 个开放阅读框架, 其核苷酸序列长1 503 bp , 推测的氨基酸序列全长为500 个氨基酸残基。核苷酸序列与藜科几种盐生植物如滨藜、碱蓬、菠菜、山菠菜和甜菜等的同源性为81% , 与甜土植物水稻的同源性为69%。氨基酸序列与以上两类植物(盐生植物和甜土植物) 的同源性比对为80% 和71% , 说明BADH 基因在藜科盐生植物中是一种较高保守的基因。BADH 基因编码的多肽在高等植物中行使重要的功能。用不同浓度的NaCl 胁迫处理盐爪爪植株, BADH mRNA 的表达水平比对照植株高, 说明盐爪爪BADH 基因的表达受盐诱导, 间接说明甜菜碱醛脱氢酶催化合成的甜菜碱作为渗透调节的小分子物质, 它的积累与盐胁迫存在紧密关联, 本研究为进一步从生理和分子水平阐明盐爪爪的耐盐机制提供一定的参考。  相似文献   

19.
Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline → betaine aldehyde → GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [14C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [14C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.  相似文献   

20.
Li QL  Gao XR  Yu XH  Wang XZ  An LJ 《Biotechnology letters》2003,25(17):1431-1436
cDNA encoding betaine aldehyde dehydrogenase (BADH) from the halophyte Suaeda liaotungensis has been cloned, sequenced and expressed in tobacco (Nictiana tabacum 89). The full-length cDNA is 1506 base pairs (bp) long and encodes a 502 amino-acid polypeptide. The cDNA fragment coding for the mature enzyme was cloned into vector pCAMBIA-1301 for expression in tobacco. Southern blotting analysis showed that that the Badh gene was integrated into the genome of tobacco. Tobacco expressing BADH survived on MS medium containing 200 mM NaCl, whereas the untransformed plants turned yellow after about 20 d and died.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号