首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   3篇
  2016年   1篇
  2015年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有10条查询结果,搜索用时 140 毫秒
1
1.
本文报道一个简便的豆科植物田著的转化试验。田蓄子叶外值体能被含非致瘤性的Ti质"Y.载体 的根癌农杆菌感染。该载体带有一个嵌合的npr-II基因和胭脂碱合成酶基因。卡那霉素抗性愈伤组 织经胭脂碱测定、N P T-11酶活性检测和DNA分子杂交试验证明外源基因已导入了田蔷细抱。  相似文献   
2.
植物环核苷酸门控离子通道及其功能研究进展   总被引:1,自引:0,他引:1  
环核苷酸门控离子通道(CNGC)是非选择性的阳离子通道,可以直接被细胞内信使小分子——环核苷酸(c AMP和c GMP)活化。该通道蛋白包含6个跨膜α-螺旋,C端各具一个交叠的环核苷酸与钙调蛋白结合区。CNGC广泛存在于各种植物细胞中。研究表明,模式植物拟南芥(Arabidopsis thaliana)的CNGC家族有20个成员,分为4个亚群,它们在抗病、花粉管生长、对Ca2+响应、抵抗重金属离子毒害和抗盐等多种信号途径中发挥重要作用,协助植物细胞应对各种生物与非生物胁迫。该文简要介绍了CNGC的结构、表达谱及其调控因子,并着重总结了近年来CNGC生物学功能的研究进展,以期为今后系统开展其功能研究提供理论依据。  相似文献   
3.
植物钙/钙调素介导的信号转导系统   总被引:1,自引:0,他引:1  
钙离子(Ca~(2+))是一种重要的第二信使,参与调节植物的生长发育和对环境的适应。钙调素(CaM)和类钙调蛋白(CML)是一类最主要的Ca~(2+)感受器,虽然其自身没有催化活性,但可通过调节下游靶蛋白的活性,进而调控细胞的各种生理活动。该文总结了植物体内CaM结合蛋白(CBP)的生理功能、鉴定方法和调控机理,以及CaM介导的信号转导途径,包括蛋白磷酸化与去磷酸化、基因转录、离子运输、活性氧代谢、激素和磷脂信号等,并对今后的研究方向进行了展望。  相似文献   
4.
甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达   总被引:16,自引:1,他引:15  
采用基因枪法将山菠菜甜菜碱醛脱氢酶 (BADH)基因导入小麦 (TriticumaestivumL .)品种 ,并且得以表达。该基因由玉米Ubi1启动子控制。在盐胁迫条件下 ,多数转基因植株叶片的BADH活性比受体亲本提高 1~ 3倍 ,部分植株相对电导率比亲本明显低 ,表明转基因植株的细胞膜在胁迫时有受损较轻倾向。PCR和Southern杂交分析证实外源BADH基因已插入小麦基因组 ,平均转化频率为 4.1%。  相似文献   
5.
在1/3海水培养基上筛选豆瓣菜耐盐变异体   总被引:7,自引:1,他引:6  
系统地研究了豆瓣菜(NasturtiumofficainaleR.Br)茎段外植体对6-BA,NAA和2,4-D的反应,确定了MS培养基附加6-BA2.0mg/L,2,4-D0.2mg/L为豆瓣菜愈伤组织诱导,继代培养基;MS培养基附加6-BA4.0mg/L为芽再生培养基;MS基本培养基为植株的生根的扦插繁殖培养基,将325个豆瓣菜茎切段外植体接种到含1/3海水的愈伤组织诱导培养基上,17块外植体  相似文献   
6.
离子注入烟草种子引起的M1代变异分析   总被引:12,自引:1,他引:11  
利用随机引物扩增DNA(RAPD)技术及SDS-聚丙烯酰胺蛋白电泳技术,对30kevN+离子注入后的烟草M1代DNA及叶片水溶性蛋白进行分析,通过RAPD反应,检测到PCR条带的缺失和增加,而对照植株未发现条带明显变化,并且条带变异率随剂量的增加而上升。60次的剂量对烟草(红花大金元)诱变效果较好,有相对较高的成活率和变异率。还发现N+离子注入后,M1代叶片水溶性蛋白与对照相比有明显变异;M1代植株株高普遍高于对照,并出现少数表型变异。  相似文献   
7.
8.
转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性   总被引:11,自引:0,他引:11  
  相似文献   
9.
利用荧光原位杂交证明普通小麦与硬粒小麦-簇毛麦双二倍体杂种培养细胞和再生植株中能够发生属间染色体易位,易位染色体不仅有臂间易位,还有小片段易位,表明通过杂种组织培养是创造属间易位的一个可行的方法,辐射处理能够大幅度促进杂种愈伤组织细胞中的染色体数目和结构变异,特别是易位频率达到7.4%。观察还表明,培养时间对杂种愈伤组织细胞中染色体数目和结构变异都有较大影响,培养细胞的染色体 异在培养的初期阶段就  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号