首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
利用根癌农杆菌介导法将反义磷脂酶Dγ基因 (PLDγ)转入白三叶草。建立了白三叶草的继代及高频再生系统 ,对传统农杆菌侵染方法进行了改良 ,通过抗生素筛选获得大量抗性植株。对抗性植株进行了PCR和PCR Southern杂交鉴定 ,证实PLDγ基因已整合入白三叶草核基因组中。  相似文献   

2.
转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性   总被引:33,自引:0,他引:33  
将山菠菜甜苹碱醛脱氢酶(BADH)基因经根癌土壤杆菌(Agrobacterium tumefaciens (Smith et Townsend)Conn)AGL1介导转入豆瓣菜(Nasturtium nofficinale R,Br.)PCR、Southerj bloting检测呈阳性的再生植株有46株,对6株再生植株的BADH活性和Northern bloting检测发现,有5株BADH酶活性明  相似文献   

3.
分离出菠菜甜菜碱醛脱氢酶基因(SoBADH)构建成由CaMV35S驱动的双元植物表达载体pBSB, 农杆菌菌株LBA4404携带该载体转化棉花, 获得转基因棉花植株。65株转基因植株经过PCR筛选、Southern blotting分析证明有45株为成功的转化株, 外源基因已经被整合到棉花的染色体组中, 并以单拷贝插入居多。对部分株系的SoBADH基因的表达进行分析表明均有较高的mRNA和蛋白的表达。经测定这些株系中的甜菜碱脱氢酶活性显著提高, 达到0.66~1.70 nmol/min/mg水平。同时这些转基因株系在盐胁迫下比对照长势强, 株高和地上部分的鲜重显著高于非转基因对照; 在低温胁迫下, 这些转基因株系表现出显著的抗冻性能。结果表明菠菜甜菜碱醛脱氢酶能够在异源植物棉花中过量表达, 并具有较高的酶活性, 转基因棉花可作为抗逆育种的种质材料。  相似文献   

4.
农杆菌介导法获得转反义磷脂酶Dγ基因大麦   总被引:5,自引:0,他引:5  
在含有反义磷脂酶Dγ基因(PLDγ)的根癌农杆菌介导下,以自然状态下生长的大麦作受体进行转基因实验。对获得的T1代种子进行抗生素筛选、PCR和PCR—Southern杂交鉴定,证实反义PLDγ基因已整合到大麦基因组中。通过对转基因植株的耐盐性鉴定,获得了一批可耐0.7%NaCl的植株。  相似文献   

5.
农杆菌介导的甜菜碱醛脱氢酶基因转化甘蓝的研究   总被引:1,自引:0,他引:1  
为获得抗旱和耐盐性提高的甘蓝植株,通过农杆菌介导法将来自菠菜的甜菜碱醛脱氢酶(Betaine Aldehyde Dehydrogenase,BADH)基因导人甘蓝品系03079,并采用正交设计优化影响转化效率的参数,建立了甘蓝高效转化体系,即以侵染液为AA液体培养基、乙酰丁香酮200μmol L^-1、侵染时间20min、共培养天数2d为最佳转化参数,在该条件下转化率可达54.26%。转基因甘蓝植株经PCR检测初步说明BADH基因已导入甘蓝中,Southern杂交证明BADH基因已稳定整合到甘蓝基因组中。甜菜碱脱氢酶活性测定结果表明,经过聚乙二醇(PEG)、NaCI和干旱处理的转基因甘蓝植株的BADH酶的平均比活力范围在2.1Umg^-1~3.6Umg^-1之间,不同处理的转基因株系酶比活力显著高于相应的未转基因株系。膜的相对电导率测定结果说明,经过PEG、NaCl和干旱处理的转基因植株平均相对电导率在16.2%~32.6%之间,耐逆境胁迫处理后的绝大多数转基因株系相对电导率显著低于相应对照。多数转BADH基因甘蓝植株在干旱、盐胁迫和PEG胁迫条件下生长势强于未转基因植株,表现为大多数转基因株系株高增幅显著高于对照,说明BADH基因的导入能提高转基因甘蓝植株的抗旱和耐盐性。我们获得的抗旱和耐盐能力明显提高的转基因甘蓝植株,可作为培育耐盐、抗旱甘蓝品种的种质材料。  相似文献   

6.
采用根癌农杆菌介导法,将拟南芥Na+/H+逆向转运蛋白(Na+/H+ antiporter)基因(AtNHX1)转入杨树.建立了杨树的继代及高频再生系统.经抗生素筛选,对再生植株进行PCR检测、PCR产物基因测序和杨树基因组DNA的Southern检测,证实已获得126株转AtNHX1基因的杨树植株.  相似文献   

7.
通过根癌农杆菌介导法获得菊花转基因植株   总被引:26,自引:0,他引:26  
以带叶茎段为外植体,通过根癌农杆菌介导法,将兔防御NP-1基因导入菊花品种“001”中。经梯度卡那霉素(kanamycin,Km)筛选,获得了大量Km抗性植株,其中部分Km抗性植株经Southern杂交鉴定为转基因植株。从而成功地建立了菊花遗传转化系统,为菊花分子育种奠定了基础。  相似文献   

8.
甜菜碱醛脱氢酶(BADH)是渗透调节剂甜菜碱生物合成中涉及的第2个酶,我们将含盐生植物山菠菜BADH基因的植物双元表达载体经基因枪法导入水稻,经盐胁迫筛选得到转化植株,经RAPD检测全部阳性,在随机选择的10株转化植株中全部测出BADH活性,而对照未见.Northern杂交表明,其中7株为阳性.在含0.5%氯化钠的盐池中大多数转基因植株生长基本正常,结实率约为10%,而对照受盐害现象显著,几乎全部枯萎.  相似文献   

9.
农杆菌介导的植物基因转化研究进展   总被引:28,自引:0,他引:28  
农杆菌介导的植物基因转佛当今植物基因转化的主要方法之一,因而深受关注,本文从农力介导的基因转化机理,植物对农杆菌侵染的反应,转基因植物的遗传表达,以及农杆菌对单子叶植物的转化等方面论述了该领域的最新研究进展,并提出了进一步研究的方向。  相似文献   

10.
通过根瘤农杆菌介导法获得菊花转基因植株   总被引:1,自引:0,他引:1  
以带叶茎段为外植体,通过根癌农杆菌介导法,将兔防御素NP-1基因导入菊花品种“001”中。经梯度卡那霉素(kanamycin,Km)筛选,获得了大量Km抗性植株,其中部分Km抗性植株经Southem杂交鉴定为转基因植株。从而成功地建立了菊花遗传转化系统,为菊花分子育种奠定了基础。  相似文献   

11.
  总被引:8,自引:0,他引:8  
Jasmonic acid (JA) is known to be involved in the response of plants to environmental stresses such as drought, and betaine (glycinebetaine) is an osmopretectant accumulated in plants under environmental stresses including drought. However, it remains currently unclear whether JA is involved in the water‐stress‐induced betaine accumulation in plant leaves. The present experiment, performed with the whole pear plant (Pyrus bretschneideri Redh. cv. Suli), revealed that the exogenously applied JA induced a significant increase of the betaine level in the pear leaves when the plants were not yet stressed by drought, and when the plants were subjected to water stress, the ‘JA plus drought’ treatment induced a significant higher betaine level than did the drought treatment alone. Meanwhile, the ‘JA plus drought’ treatment induced higher levels of betaine aldehyde dehydrogenase (BADH, E C 1.2.1.8) and activities in the leaves than did the drought treatment alone. These results obtained in the whole plant experiments were supported by the results of detached leaf experiments. In detached leaves JA induced significant increases in betaine levels, BADH activities and BADH protein amounts in a time‐ and concentration‐dependent manner. These data demonstrate that JA is involved in the drought‐induced betaine accumulation in pear leaves.  相似文献   

12.
    
The responses of five transgenic tomato (Lycopersicon esculentum Mill) lines containing the betaine aldehyde dehydrogenase (BADH) gene to salt stress were evaluated. Proline, betaine (N, N, N-trimethylglycine, hereafter betalne), chlorophyll and ion contents, BADH activity, electrolyte leakage (EL), and some growth parameters of the plants under 1.0% and 1.5% NaCl treatments were examined. The transgenic tomatoes had enhanced BADH activity and betaine content, compared to the wild type under stress conditions. Salt stress reduced chlorophyll contents to s higher extent in the wild type than in the transgenic plants. The wild type exhibited significantly higher proline content than the transgenic plants at 0.9% and 1.3% NaCh Cell membrane of the wild type was severely damaged as determined by higher EL under salinity stress. K^+ and Ca^2+ contents of all tested lines decreased under salt stress, but the transgenic plants showed a significantly higher accumulation of K^+ and Ca^2+ than the wild type. In contrast, the wild type had significantly higher CI- and Na^2+ contents than the transgenic plants under salt stress. Although yield reduction among various lines varied, the wild type had the highest yield reduction. Fruit quality of the transgenic plants was better in comparison with the wild type as shown by a low ratio of blossom end rot fruits. The results show that the transgenic plants have improved salt tolerance over the wild type.  相似文献   

13.
Members of the Chenopodiaceae, such as sugar beet and spinach, accumulate glycine betaine in response to salinity or drought stress. The last enzyme in the glycine betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). In sugar beet the activity of BADH was found to increase two- to four-fold in both leaves and roots as the NaCl level in the irrigation solution was raised from 0 to 500 mM. This increase in BADH activity was paralleled by an increase in level of translatable BADH mRNA. Several cDNAs encoding BADH were cloned from a gt10 libary representing poly(A)+ RNA from salinized leaves of sugar beet plants, by hybridization with a spinach BADH cDNA. Three nearly full-length cDNA clones were confirmed to encode BADH by their nucleotide and deduced amino acid sequence identity to spinach BADH; these clones showed minor nucleotide sequence differences consistent with their being of two different BADH alleles. The clones averaged 1.7 kb and contained an open reading frame predicting a polypeptide of 500 amino acids with 83% identity to spinach BADH. RNA gel blot analysis of total RNA showed that salinization to 500 mM NaCl increased BADH mRNA levels four-fold in leaves and three-fold in the taproot. DNA gel blot analyses indicated the presence of at least two copies of BADH in the haploid sugar beet genome.  相似文献   

14.
15.
16.
The objective of this study was to investigate the behaviour of different legumes against salinity and water stress, thus trying to discover simultaneous adaptations to both stresses. The nitrogen fixation, transpiration, predawn leaf water potential, and stomatal response of Medicago sativa L. (cvs. Tierra de Campos and Aragon), Trifolium repens L. (cv. Aberystwyth S-184) and T. brachycalycinum Katzn. et Morley (= T. subterraneum L. cv. Clare) were compared at three levels of stress (0.05, 0.3 and 0.5 MPa of either NaCl or polyethylene glycol 6000) in nutrient solution. The plants were stressed for three days and then returned to control nutrient solution. The changes in the parameters analyzed were dependent on the proportion of stress treatments and the nature of the species, always being greater in plants from PEG than from NaCl solutions. Transfer of lucerne and subclover plants from NaCl at 0.05 MPa to a non-saline medium resulted in an increase of nitrogen fixation above the level of the non-salinized control plants, especially significant in lucerne. Analysis of possible inorganic impurities in commercial PEG suggest that such type of impurities are not responsible for the toxic effects reported. Plant damage resulting from PEG treatment was apparently due to penetrations of PEG (as determined qualitatively by using the tetraiodinebismuthic acid technique) or low-molecular organic impurities into the plant. – The results are discussed as part of the adaptation of the different species to salinity and water stress. The best performance was given by Tierra de Campos.  相似文献   

17.
  总被引:16,自引:1,他引:16  
Glycinebetaine is synthesized in plants by the two‐step oxidation of choline, with betaine aldehyde as the intermediate. The reactions are catalyzed by choline mono‐oxygenase and betaine aldehyde dehydrogenase. Rice plants, which do not accumulate glycinebetaine, possess a gene encoding betaine aldehyde dehydrogenase, whose activity is detectable at low levels. To evaluate the compatibility in rice of glycinebetaine on growth and tolerance to salt, cold and heat, we produced transgenic rice plants by introduction of a cDNA for betaine aldehyde dehydrogenase of barley, which is localized in peroxisomes unlike the chloroplast‐specific localization of betaine aldehyde dehydrogenase in spinach and sugar beet. The transgenic rice plants converted high levels of exogenously applied betaine aldehyde (up to 10 mol m–3) to glycinebetaine more efficiently than did wild‐type plants. The elevated level of glycinebetaine in transgenic plants conferred significant tolerance to salt, cold and heat stress. However, very high levels of glycinebetaine, resulting from conversion of applied betaine aldehyde to glycinebetaine or from exogenous application, inhibited increases in length of rice plants but not increases in dry weight. Our results suggested that the benefits of accumulation of glycinebetaine by rice plants might be considerable under high light conditions.  相似文献   

18.
A low pH capillary electrophoresis (CE) was used for the measurement of free choline in plant leaves. Choline in the leaf extract was first converted to the benzoyl ester and put into CE. A well-resolved peak in the electropherogram was easily obtained. Involvement of enzymes in a two-step oxidation of choline to glycine betaine was evaluated in different plant species with the same mehod developed for glycine betaine and betaine aldehyde.  相似文献   

19.
Two divergent populations of T. repens cv. Haifa developed from two generations of recurrent selection for shoot chloride concentration, were grown in the greenhouse at 0 and 40 mol m–3 NaCl. Over two harvest cycles at 40 mol m–3 NaCl, the population selected for a low concentration of chloride in the shoot maintained a significantly lower chloride and sodium concentration compared with those plants selected for a high shoot chloride concentration. The distribution of chloride in the shoots was further examined in a subsample of plants from both populations. In all plants, concentrations of chloride were lower in the expanding and fully expanded leaves than in the older leaf tissue or petioles.While there were no significant differences in the photosynthetic rates between lines, shoot yields and relative leaf expansion rates were higher in the low chloride population. Plant death was greater in plants selected for high shoot chloride. These results suggest that selections based on measurements of low shoot chloride concentrations may be successful in developing a cultivar of T. repens with improved salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号