首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
本研究采用AFLP标记对河北省、辽宁省、吉林省、山西省、内蒙古自治区和西藏自治区的10份野生扁蓿豆居群进行遗传多样性分析。从64对AFLP引物组合中,筛选出8对扩增条带清晰、多态性高的引物组合,8对引物共扩增出640个条带,其中多态性条带有472个,多态性位点百分率为73.8%;Nei's基因多样性指数平均为0.157,Shannon's多态性信息指数平均为0.099;居群间遗传相似系数(GS)平均值为0.827。聚类和主成分分析可将10个扁蓿豆居群聚为3大类,结果与居群的地理分布大致相符,呈一定的地域性分布规律。由此可见,AFLP分子标记研究结果能较好地揭示扁蓿豆居群间的遗传多样性。对我国各地的野生扁蓿豆资源的广泛收集、评价和基因资源的保护有重要的意义。  相似文献   

2.
宁夏60份粳稻种质资源遗传多样性分析   总被引:3,自引:0,他引:3  
试验用SSR分子标记对60份宁夏粳稻种质资源进行遗传多样性分析。103对SSR引物表现多态性的有58对,共扩增出212条多态性条带,等位变异范围为2~9,平均每对引物3.7个;多态性信息含量(PIC)变幅为0.032~0.788,平均为0.403;高多态性位点主要发生在3号、6号和11号染色体上,而无多态性或低多态性位点主要发生在1号和10号染色体上;成对供试材料的遗传相似系数GS值变幅为0.642~0.958,平均为0.790,单个供试材料的平均GS值变幅为0.710~0.816,平均为0.781,亲缘关系较近;UPGMA聚类表明,在遗传相似系数约0.785处,供试材料可被分为11类,大部分材料被聚在一类中。  相似文献   

3.
黄淮麦区小麦品种(系)的ISSR位点遗传多样性分析   总被引:28,自引:6,他引:22  
选用11个ISSR引物,对黄淮麦区96个小麦推广品种(系)进行遗传多样性分析。共检测到96个多态性位点,每个引物多态性位点数平均为8.7个,变幅为3~23个;ISSR引物的多态性信息含量PIC变幅为0.601~0.941,平均0.791,表明ISSR具有较强的品种间区分能力,是研究小麦种质资源遗传多样性的有效分子标记技术之一。96个品种(系)间,Nei’s遗传相似系数变化范围为0.53~0.91,平均为0.60,品种间遗传相似性变幅较大,表明黄淮麦区不同小麦品种(系)间存在着不同程度的遗传多样性差异。根据品种间遗传相似系数聚类,96份材料被聚成8大类群,共14个亚类,类群与系谱和原产地无关。  相似文献   

4.
利用RAPD标记分析大麦种质资源的遗传多样性   总被引:10,自引:4,他引:6  
利用RAPD标记对19份西藏近缘野生大麦材料、33份我国不同省市的地方品种以及8份国外引进大麦品种共60份大麦种质资源的遗传多样性进行检测.结果表明材料间遗传差异明显.32个RAPD引物中,有25个引物(占78.13%)可扩增出清晰且具多态性的条带,另外7个引物能扩增出1~3条清晰但无多态性的条带.每个引物可扩增出1~8条多态性带,平均为3.72条.32个引物共产生119条DNA片段,其中87条具有多态性,多态性比率(PPB)为73.11%,平均多态信息量(PIC)为0.434;每个位点平均有效等位基因数(Ne)为2.304;材料间遗传相似系数GS变化范围为0.757~0.981,平均值为0.871.19份来源于西藏的近缘野生大麦材料间GS值变幅为0.818~0.969,平均为0.892;33份我国栽培大麦地方品种间的GS值变化范围为0.783~0.981,平均为0.879;8份分别来自8个国家的栽培大麦品种间的GS值变幅为0.820~0.956,平均为0.882.根据RAPD标记分析的结果,对60份大麦种质资源进行聚类分析,在平均GS值0.871水平上60份大麦材料可聚为5类,聚类结果能在一定程度上反应材料的地理分布关系,但某些相同地理来源的材料也较分散地分布在整个聚类树中.本研究从分子水平上进一步证明了我国栽培大麦丰富的遗传多样性,是世界栽培大麦的遗传多样性中心之一.  相似文献   

5.
蓖麻品种遗传多样性与亲缘关系的SRAP分析   总被引:5,自引:0,他引:5  
利用SRAP技术对81份蓖麻品种材料亲缘关系进行了分析,实验选用20对SRAP引物组合,在81份蓖麻材料中共扩增出263条带,多态性条带计214条,多态性条带比率(PPB)为81.37%,遗传相似系数变幅范围在0.32558~0.92973,显示了蓖麻品种的遗传多样性较丰富。从分子聚类结果分析表明,在相异系数0.43为阈值时,可将81份蓖麻材料分为4个类群L1-1、L1-2、L1-3和L1-4;若在相异系数0.287为阈值时,又可将L1-4大类群分为两个亚类群L2-1和L2-2。从聚类图得知,聚在同一亚类群的蓖麻品种大多数所处的地域相近或者是由同一育种单位所选育,其类内的品种基因型遗传相似系数较高,类间的品种遗传差异相对较大,该分子聚类树状图可为蓖麻栽培种种质资源遗传多样性与亲缘关系在育种的利用上提供科学依据。  相似文献   

6.
利用ISSR技术对48份乌塌菜种质资源进行遗传多样性分析。从60条随机引物中筛选出稳定性强、条带清晰且多态性丰富的9条引物进行PCR扩增,共扩增出103条谱带,平均每个引物扩增出11.4条带,其中多态性带85条,多态性位点百分率为82.68%。不同乌塌菜种质间遗传相似系数变幅为0.59~0.97,说明ISSR标记能够揭示材料间较高的遗传多样性。利用UPGMA聚类分析,ISSR标记能将48份乌塌菜品种完全区分开,48份乌塌菜种质被划分为4个类群,聚类结果与叶片颜色相关,为乌塌菜品种资源的研究利用提供参考。  相似文献   

7.
辣椒31个优良自交系的亲本类群分析   总被引:2,自引:0,他引:2  
任羽  张银东  尹俊梅  王得元 《遗传》2008,30(2):237-237―245
以包含我国重要尖椒品种的亲本材料在内的31份优良自交系为材料, 利用SRAP标记和基因型值分析技术开展了辣椒自交系间遗传差异的分析与类群划分研究。结果表明: 在30个引物组合中, 27个引物组合可以 在自交系间扩增出多态性条带, 共扩增出310个多态性条带, 平均每个引物组合产生11.5个多态性条带, 显示出SRAP技术具有较强的分析效率; 基于SRAP标记和Yule相似系数对这些自交系进行的聚类分析中, 可以基本区分辣椒的2个变种(C. annuum var. grossum和C. annuum var. longum), 而且可以反映出自交系间的亲缘及系谱关系; 在相似系数为0.67处, 可将这31个自交系分为4个类群; 基于基因型值和标准Euclidean距离对这些自交系进行的聚类分析可成功地将辣椒的两个变种完全区分; 在遗传距离约4.5处, 可将这31个自交系分为4个类群; 自交系间基于SRAP标记与基因型值的遗传距离存在一定的相关性。  相似文献   

8.
采用SRAP分子标记技术对西南地区11种乡土杨树共333份样本的遗传变异进行分析,7对引物组合共扩增出215条带,其中多态性条带158条,多态性条带百分率为73.49%,表明11种乡土杨树间存在广泛变异。AMOVA分析结果显示,种间遗传变异分量为10.84,占总变异的48.70%,遗传差异达极显著水平(P0.001)。种间的遗传相似系数变幅在0.8199~0.9607之间,平均遗传相似系数为0.8983。聚类结果表明,昌都杨和藏川杨之间的遗传差异最小,大叶杨和三脉青杨之间的遗传差异最大。本研究结果为西南地区乡土杨树基因资源的保护、开发和利用提供了一定的科学理论依据。  相似文献   

9.
利用ISSR分子标记技术对36份节瓜自交系进行遗传多样性分析。从100条ISSR引物中筛选出14条多态性明显、条带清晰、反应稳定的引物,对36份节瓜材料基因组DNA进行扩增,共扩增出76条清晰稳定的条带,其中多态性条带45条,多态性比例为59.21%。36份材料间遗传相似系数在0.57~0.96之间,表明材料间遗传多样性较为狭窄。聚类分析结果显示,以遗传相似系数0.76为阈值时,可将36份节瓜自交系材料聚为3类,分类结果与供试材料的地理来源较为吻合。基于聚类分析结果,可为今后节瓜的新品种选育、遗传改良以及分子遗传连锁图谱构建的杂交亲本选择提供科学依据。  相似文献   

10.
肉质色不同萝卜遗传多样性的SSR分子标记分析   总被引:1,自引:0,他引:1  
利用微卫星(SSR)标记技术,从600对SSR引物中筛选86对扩增条带清晰的引物,检测了来自我国不同地区37个肉质不同颜色萝卜品种的遗传多样性。86对引物共扩增到976个条带,每对引物扩增出2~17个条带,平均为10.7个,其中多态性条带892个,多态性条带比例为91.39%;共检测出753个基因型,每对引物检测2~20个基因型,平均8.7个,其中有效基因型443.99,有效基因型比例为58.96%;Shannon多态性指数变幅为0.44~2.77,平均1.76。当相似系数为0.81时,可将供试萝卜分成3类,第I类包括6份白色肉质萝卜,第II类包括3份红色肉质萝卜和6份白色肉质萝卜,第III类包括22份红色肉质萝卜。各红色肉质萝卜品种间的遗传相似系数有97%大于0.80,而各白色肉质萝卜品种间的遗传相似系数有91%大于0.80。红色肉质萝卜遗传多样性略低于白色肉质萝卜,红色肉质萝卜与白色肉质萝卜间平均相似系数为0.83,说明不同肉色的萝卜间亲缘关系较密切,在分类上红色肉质萝卜可能是白色萝卜的一个变种。  相似文献   

11.
Cultivated tomato (L. esculentum L.) germplasm exhibits limited genetic variation compared with wild Lycopersicon species. Amplified fragment length polymorphism (AFLP) markers were used to evaluate genetic variation among 74 cultivars, primarily from California, and to fingerprint germplasm to determine if cultivar-specific patterns could be obtained. All 74 cultivars were genotyped using 26 AFLP primer combinations; of the 1092 bands scored, 102 AFLP bands (9.3%) were polymorphic. Pair-wise genetic similarity coefficients (Jaccard and Nei-Li) were calculated. Jaccard coefficients varied from 0.16 to 0.98 among cultivar pairs, and 72% of pair-wise comparisons exceeded 0.5. UPGMA (unweighted pair-group method with arithmetic averaging) clustering and principle component analysis revealed four main clusters, I-IV; most modern hybrid cultivars grouped in II, whereas most vintage cultivars grouped in I. Clusters III and IV contained three and two cultivars, respectively. Some groups of cultivars closely related by pedigree exhibited high bootstrap values, but lower values (<50%) were obtained for cluster II and its four subgroups. Unique fingerprints for all 74 cultivars were obtained by a minimum of seven AFLP primer pairs, despite inclusion of some closely related cultivars. This study demonstrated that AFLP markers are effective for obtaining unique fingerprints of, and assessing genetic diversity among, tomato cultivars.  相似文献   

12.
Genetic diversity in recent elite faba bean lines using AFLP markers   总被引:9,自引:0,他引:9  
Amplified fragment length polymorphism (AFLP) markers were used to study the genetic diversity among a large set (n = 79) of inbred lines of recent elite faba bean (Vicia faba L.) cultivars with Asian, European (Northern and Southern) and North African origin. The inbred lines were analyzed using eight selected AFLP primer combinations that produced 477 polymorphic fragments. Errors when scoring repeated lanes of one pre-amplification reaction on one gel were negligible, whereas errors when scoring lanes of two individuals of the same inbred line run on different gels were markedly higher. Scoring across gels should be backed by replicates and several appropriate check entries. Based on clustering with Jaccard's similarity coefficient and Principal Coordinate Analysis, only the Asian lines were distinct as a group, the other lines showed no marked further grouping. Nevertheless, several known pedigree relationships were verified. A priori grouping of inbred lines (geographic origin and seed size) and AFLP data corroborate available information on the history of spread and cultivation of faba bean in the studied regions. Based on the diversity observed, studies especially concerning the relationship between genetic similarity based on AFLP markers and hybrid performance within the European elite germplasm have been launched.Communicated by H.F. Linskens  相似文献   

13.
We have constructed a tomato genetic linkage map based on an intraspecific cross between two inbred lines of Lycopersicon esculentum and L. esculentum var. cerasiforme. The segregating population was composed of 153 recombinant inbred lines. This map is comprised of one morphological, 132 RFLP (restriction fragment length polymorphism, including 16 known-function genes), 33 RAPD (random amplified polymorphic DNA), and 211 AFLP (amplified fragment length polymorphism) loci. We compared the 3 types of markers for their polymorphism, segregation, and distribution over the genome. RFLP, RAPD, and AFLP methods revealed 8.7%, 15.8%, and 14.5% informative bands, respectively. This corresponded to polymorphism in 30% of RFLP probes, 32% of RAPD primers, and 100% of AFLP primer combinations. Less deviation from the 1:1 expected ratio was obtained with RFLP than with AFLP loci (8% and 18%, respectively). RAPD and AFLP markers were not randomly distributed over the genome. Most of them (60% and 80%, respectively) were grouped in clusters located around putative centromeric regions. This intraspecific map spans 965 cM with an average distance of 8.3 cM between markers (of the framework map). It was compared to other published interspecific maps of tomato. Despite the intraspecific origin of this map, it did not show any increase in length when compared to the high-density interspecific map of tomato.  相似文献   

14.
Differences of both amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) polymorphisms were compared between the 60-d-old rice (Oryza sativa L. cv. DH7) and F3 rice plants (SP3) derived from seed, which endured a 7-d-space flight in March 2002. Total leaf AFLP DNA bands amplified from 22 primer pairs were 537 in DH7, whereas 562 in SP3. From the total 267 SSR DNA bands generated by 267 primer pairs, 39 were polymorphic with 22 larger (56 %) or 17 smaller (44 %) fragment size bands. The greatest numbers of AFLP DNA bands were amplified by primer E1M1 in DH7 (33) and E3M1 in SP3 (35), whilst the least by E4M3 in DH7 (14) and E5M2 in SP3 (16).  相似文献   

15.
Amplified fragment length polymorphism (AFLP) analysis has been used to characterize 15 root-knot nematode populations belonging to the three parthenogenetic species Meloidogyne arenaria , M. incognita and M. javanica. Sixteen primer combinations were used to generate AFLP patterns, with a total number of amplified fragments ranging from 872 to 1087, depending on the population tested. Two kinds of polymorphic DNA fragments could be distinguished: bands amplified in a single genotype, and bands polymorphic between genotypes (i.e. amplified in not all but at least two genotypes). Based on presence/absence of amplified bands and pairwise similarity values, all the populations tested were clustered according to their specific status. Significant intraspecific variation was revealed by AFLP, with DNA fragments polymorphic among populations within each of the three species tested. M. arenaria appeared as the most variable species, while M. javanica was the least polymorphic. Within each specific cluster, no general correlation could be found between genomic similarity and geographical origin of the populations. The results reported here showed the ability of the AFLP procedure to generate markers useful for genetic analysis in root-knot nematodes.  相似文献   

16.
Diversity among tropical maize inbred lines that compose breeding programs, is not well known. The lack of this information has made the arrangement of heterotic groups to be used for breeding purposes difficult. Methods of molecular analysis have been used as efficient alternatives for evaluating genetic diversity, aiming at heterotic group arrangement and acquisition of new hybrids. In this study, AFLP (amplified fragment length polymorphism) was used to investigate the genetic relationships among 96 tropical maize inbred lines from two different origins. The polymorphism level among the genotypes and the possibility of their allocation in heterotic groups were evaluated. Besides, correlations among genetic diversity and flowering time were analyzed. Nine primer combinations were used to obtain AFLP markers, producing 638 bands, 569 of which were polymorphic. Genetic similarities (GS), determined by Jaccard's similarity coefficient, varied from 0.345 to 0.891, with an average of 0.543. The dendrogram based on the GS and on the UPGMA cluster method did not separate the inbred lines in well-defined groups. Aiming at separating the lines into more accurate groups, Tocher's optimization procedure was carried out, 17 groups being identified. Association between flowering time and germplasm pools was detected. AFLP showed itself to be a robust assay, revealing a great power of detection of genetic variability in the tropical germplasm, and also demonstrated to be very useful for guiding breeding programs.  相似文献   

17.
Among the 400 soybean (Glycine max) landraces, we selected 3 tolerant (KAS150-9, KAS160-15, and KAS170-9) and 3 susceptible lines (KAS160-14, KAS160-20, and KAS201-6-1) by the survival percentage and injury scores. Susceptible lines showed decrease in chlorophyll content and increase in glucose and malondialdehyde (MDA) contents under waterlogging stress, while tolerant lines did not change significantly. For AFLP analysis, 8 EcoRI (+3) and 8 MseI (+3) primers used in 32 primer combinations generated a total of 2 566 bands with a mean of 80 bands per primer combination, of which 1 117 (43.5 %) were clearly polymorphic between the tolerant and susceptible lines. A genetic similarity coefficient, based on cluster analysis using an unweighted pair grouping method of average (UPGMA), was 0.79 for the tolerant group, while the susceptible landraces were genetically less related, with a genetic similarity coefficient of 0.17. The 10 reproducible polymorphic PCR products present in the 3 tolerant or susceptible lines were sequenced and converted into sequence tagged site (STS) markers. These STS primer sets were designated GmWT01-GmWT06 and GmWS01-GmWS04. Two STS primer sets, GmWT06 and GmWS02, generated a single monomorphic PCR product identical in size to the original AFLP fragments. For the broad application of these STS markers in marker-assisted selection (MAS) for soybean genotypes tolerant to waterlogging stress, two developed STS markers are being evaluated with putative waterlogging tolerant mutant lines induced by γ-radiation in soybean mutation breeding programs.  相似文献   

18.
Data on AFLP (eight primer pairs) and 14 phenotypic traits, collected on 55 elite and exotic bread wheat genotypes, were utilized for estimations of genetic diversity. We earlier used these 55 genotypes for a similar study using SSRs and SAMPL. As many as 615 scorable AFLP bands visualized included 287 (46.6%) polymorphic bands. The phenotypic traits included yield and its component traits, as well as physiomorphological traits like flag leaf area. Dendrograms were prepared using cluster analysis based on Jaccard's similarity coefficients in case of AFLP and on squared Euclidean distances in case of phenotypic traits. PCA was conducted using AFLP data and a PCA plot was prepared, which was compared with clustering patterns in two dendrograms, one each for AFLP and phenotypic traits. The results were also compared with published results that included studies conducted elsewhere using entirely different wheat germplasm and our own SSR and SAMPL studies based on the same 55 genotypes used in the present study. It was shown that molecular markers are superior to phenotypic traits and that AFLP and SAMPL are superior to other molecular markers for estimation of genetic diversity. On the basis of AFLP analysis and keeping in view the yield performance and stability, a pair of genotypes (E3876 and E677) was recommended for hybridization in order to develop superior cultivars.  相似文献   

19.
Bamboo is one of the most important forest resources with a strong carbon fixation capability. To utilize genetic resource of Phyllostachys violascens, ISSR (inter-simple sequence repeat), SRAP (sequence-related amplified polymorphism), and AFLP (amplified fragment length polymorphism) techniques were used for the first time for the assessment of genetic diversity within its different cultivars. A total of 209 (136 polymorphic), 222 (152 polymorphic), and 434 (253 polymorphic) bands were detected using 15 ISSR primers, 15 primer combinations of SRAP, and 15 primer combinations of AFLP, respectively. The mean genetic similarity of Ph. violascens was 0.872, 0.867 or 0.871 for the ISSR, SRAP and AFLP analyses, respectively. Based on genetic diversity, all the cultivars of Ph. violascens could be divided into four groups, which are reflected by their morphologies. Our data demonstrated that all three methods are useful in the identification of genetic diversity in Ph.violascens, but AFLP is the most efficient.  相似文献   

20.
The amplified fragment length polymorphism (AFLP) technique has been used to enhance marker density in a large set of recombinant inbred strains (H × B and B × H) derived from a spontaneously hypertensive rat (SHR/OlaIpcv) and a Brown-Norway (BN.lx/Cub) inbred strain. Thirteen different primer combinations were tested and a total of 191 polymorphic bands were detected. From these polymorphic bands 89 AFLP markers could be assigned to specific chromosomes. Several of these AFLP markers were mapped to regions with low marker density, thus filling up gaps in the existing genetic map of these recombinant inbred strains. These results substantiate the value of the AFLP technology in increasing marker density in genetic maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号