首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A group of SARS-like coronaviruses(SL-CoV)have been identified in horseshoe bats.Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity,SL-CoV does not bind to the same cellular receptor as for SARS-CoV and the N-terminus of the S proteins only share 64%amino acid identity,suggesting there are fundamental differences between these two groups of coronaviruses.To gain insight into the basis of this difference,we established a recombinant adenovirus system expressing t...  相似文献   

2.
SARS-like coronavirus (SL-CoV) in bats have a similar genomic organization to the human SARS-CoV. Their cognate gene products are highly conserved with the exception of the N-terminal region of the S proteins, which have only 63-64% sequence identity. The N-terminal region of coronavirus S protein is responsible for virus-receptor interaction. In this study, the immunogenicity of the SL-CoV S protein (SSL) was studied and compared with that of SARS-CoV (SSARS). DNA immunization in mice with SSL elicited a high titer of antibodies against HIV-pseudotyped SSL. The sera had low cross-reactivity, but no neutralization activity, for the HIV-pseudotyped SSARS. Studies using wild bat sera revealed that it is highly likely that the immunodominant epitopes overlap with the major neutralizing sites of the SL-CoV S protein. These results demonstrated that SL-CoV and SARS-CoV shared only a limited number of immunogenic epitopes in their S proteins and the major neutralization epitopes are substantially different. This work provides useful information for future development of differential serologic diagnosis and vaccines for coronaviruses with different S protein sequences.  相似文献   

3.
The nucleocapsid protein (N) is a major structural protein of coronaviruses. The N protein of bat SARS-like coronavirus (SL-CoV) has a high similarity with that of SARS-CoV. In this study, the SL-CoV N protein was expressed in Escherichia coli, purified and used as antigen. An Indirect Enzyme-Linked Immunosorbent Assay (indirect ELISA) was developed for detection of SARS- or SL-CoV infections in bat populations. The detection of 573 bat sera with this indirect ELISA demonstrated that SL-CoVs consistently circulate in Rhinilophus species, further supporting the proposal that bats are natural reservoirs of SL-CoVs. This method uses 1-2 μl of serum sample and can be used for preliminary screening of infections by SARS- or SL-CoV with a small amount of serum sample.  相似文献   

4.
Ren W  Qu X  Li W  Han Z  Yu M  Zhou P  Zhang SY  Wang LF  Deng H  Shi Z 《Journal of virology》2008,82(4):1899-1907
Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.  相似文献   

5.
SARS-Cov及其他冠状病毒基因组比较分析   总被引:7,自引:0,他引:7  
摘要:对病毒种内和种间基因组的比较分析能获得很多关于病毒起源与演化的信息。对17株SARS-CoV的种内基因组变异分析发现共有137个变异位点,估算出SARS-CoV的突变率为8.04×10-3核苷酸替换/位点/年。变异位点在基因组上的分布不均匀,变异位点最多的是基因组中编码S1蛋白的区域,而在编码依赖于RNA的RNA聚合酶区域中几乎没有变异位点。核苷酸和氨基酸替换的偏性预示变异可能不仅仅是由随机漂变产生。对冠状病毒种间基因组结构比较分析发现,SARS-CoV的基因组结构与IBV很相似;而保守基因系统发育分析表明,SARS-CoV属于冠状病毒的一个新分支,并且与血清型第二组冠状病毒进化关系较近。对其他某些分子特征的分析发现,在不同的方面SARS-CoV和不同组冠状病毒有不同的相似点。进一步对基因组非保守开放阅读框(ORF)的基序(motif)和跨膜区分析发现,各组冠状病毒基因组中位于基因S-E间的非保守ORF可能是同源的,但不是绝对必要的;而IBV和SARS-CoV的基因组中位于基因M-N间ORF可能不是同源的。综合分析SARS-CoV与3组血清型冠状病毒进化关系、宿主分布,以及SARS-CoV和IBV的s2m的进化关系,可以推测SARS-CoV有可能来自禽类。 Abstract:The genome comparison of inter-species and intra-species can give us much information about the origin and evolution of viruses.There are 137 mutation sites in the 17 genomes of SARS-CoV,and the mutation rate is about 8.04×10-3 substitution/site/year.The distribution of the segregating sites is not steady,the most variable region appears in S1 protein,and the nucleotide sequence of RNA-dependent RNA polymerase has very few mutation sites.The substitution bias of nucleotide acids and amino acids indicates the non-random drift products.The comparison of genome structures of SARS-CoV and other coronaviruses shows that SARS-CoV and IBV share the same genome structure.Phylogenetic analyses of conserved genes of coronaviruses indicate that SARS-CoV is a new branch of coronaviruses and appears more close to the group II coronaviruses.Interestingly,SARS-CoV shares some different features with different groups of coronaviruses.Additional analyses show that the first ORFs between S and E genes of some coronaviruses are transmembrane proteins and share the common motif,indicating the possible common ancestor.From the host distribution of different groups of coronaviruses and the phylogeny of s2m,we can deduce that avian is the probable natural host of SARS-CoV.  相似文献   

6.
近二十多年,全球范围内先后爆发了由严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)、中东呼吸综合征冠状病毒(middle east respiratory syndrome coronavirus,MERS-CoV)和严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)3种高致病性冠状病毒导致的疫情。这3种高致病性冠状病毒感染通常伴随着免疫系统功能失调,临床表现有淋巴细胞减少症、细胞因子风暴、急性呼吸系统窘迫综合征,甚至多器官衰竭而导致死亡。揭示高致病性冠状病毒在免疫应答中的作用机制,对于预防与控制冠状病毒感染具有重要意义。本文总结了SARS-CoV、MRES-CoV和SARS-CoV-2的进入机制和受体特征、固有免疫应答和适应性免疫应答失调方面的研究进展,强调了高致病性冠状病毒与宿主免疫应答之间的复杂相互作用,以期为防治冠状病毒感染提供参考。  相似文献   

7.
The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.  相似文献   

8.
Bai B  Hu Q  Hu H  Zhou P  Shi Z  Meng J  Lu B  Huang Y  Mao P  Wang H 《PloS one》2008,3(7):e2685
The pathogenesis of SARS coronavirus (CoV) remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S) protein of SARS-like coronavirus (SL-CoV) isolated from bats (vAcBS) and the envelope (E) and membrane (M) proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs) as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS) into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-alpha in immature dendritic cells (DCs). Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-alpha. Further study indicated that IFN-gamma+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS) and the other two from human SARS-CoV (E and M), activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV.  相似文献   

9.
为了表达SARS-CoV的S蛋白的受体结合区并对其免疫原性进行分析,用PCR方法扩增S蛋白的受体结合区基因片段,克隆至原核表达质粒pET-F32a+并在大肠杆菌中表达,应用Western—blot鉴定表达的目的蛋白,而后以该蛋白作为诊断抗原包被酶联卡反来检测20份SARS病人血清和28份健康人血清,结果原核表达的S蛋白能够和所用的SARS病人血清反应。这提示表达的S重组蛋白具有良好的抗原性。将变性纯化的重组蛋白和复性蛋白分别皮下免疫小鼠,第三次免疫一周后收集抗血清,用ELISA测定抗体和同时测定中和抗体活性。用变性的抗原免疫的小鼠血清均无中和活性;而用复性的蛋白免疫的小鼠产生了中和抗体。实验表明,S蛋白受体结合区无线性中和表位,中和抗体的产生是由构象表位诱导的。提示该蛋白有可能应用于亚单位疫苗的研究。  相似文献   

10.
The epitope study on the SARS-CoV nucleocapsid protein   总被引:6,自引:0,他引:6  
The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this prot  相似文献   

11.
重组SARS冠状病毒M蛋白的表达、纯化及鉴定   总被引:1,自引:0,他引:1  
SARS冠状病毒是人的严重急性呼吸综合征的病原体。根据对其他种类冠状病毒的研究结果 ,膜蛋白 (M蛋白 )是病毒主要的结构蛋白 ,重组M蛋白可被用来作为抗原检测对应冠状病毒的感染和制备疫苗。SARS病毒M蛋白基因克隆到原核表达载体pMAL cRI中 ,利用N端和C端分别融合麦芽糖结合蛋白 (maltosebindingprotein和MxeGyrAinteinCBD的策略 ,在大肠杆菌中初步表达了重组M蛋白 ,并通过Western印迹和质谱对蛋白质进行了鉴定。重组蛋白质经亲和层析得到了部分纯化 ,纯化后的蛋白质将用于功能研究与诊断试剂盒的研制。  相似文献   

12.
Chen Z  Zhang L  Qin C  Ba L  Yi CE  Zhang F  Wei Q  He T  Yu W  Yu J  Gao H  Tu X  Gettie A  Farzan M  Yuen KY  Ho DD 《Journal of virology》2005,79(5):2678-2688
Immunization with a killed or inactivated viral vaccine provides significant protection in animals against challenge with certain corresponding pathogenic coronaviruses (CoVs). However, the promise of this approach in humans is hampered by serious concerns over the risk of leaking live severe acute respiratory syndrome (SARS) viruses. In this study, we generated a SARS vaccine candidate by using the live-attenuated modified vaccinia virus Ankara (MVA) as a vector. The full-length SARS-CoV envelope Spike (S) glycoprotein gene was introduced into the deletion III region of the MVA genome. The newly generated recombinant MVA, ADS-MVA, is replication incompetent in mammalian cells and highly immunogenic in terms of inducing potent neutralizing antibodies in mice, rabbits, and monkeys. After two intramuscular vaccinations with ADS-MVA alone, the 50% inhibitory concentration in serum was achieved with reciprocal sera dilutions of more than 1,000- to 10,000-fold in these animals. Using fragmented S genes as immunogens, we also mapped a neutralizing epitope in the region of N-terminal 400 to 600 amino acids of the S glycoprotein (S400-600), which overlaps with the angiotensin-converting enzyme 2 (ACE2) receptor-binding region (RBR; S318-510). Moreover, using a recombinant soluble RBR-Fc protein, we were able to absorb and remove the majority of the neutralizing antibodies despite observing that the full S protein tends to induce a broader spectrum of neutralizing activities in comparison with fragmented S proteins. Our data suggest that a major mechanism for neutralizing SARS-CoV likely occurs through blocking the interaction between virus and the cellular receptor ACE2. In addition, ADS-MVA induced potent immune responses which very likely protected Chinese rhesus monkeys from pathogenic SARS-CoV challenge.  相似文献   

13.
Guo Y  Sun S  Wang K  Zhang S  Zhu W  Chen Z 《DNA and cell biology》2005,24(8):510-515
The S2 domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein is responsible for fusion between virus and target cell membranes, and is expected to be immungenic. In this study, we investigated the immune responses against the S2 subunit in BALB/c mice, which were vaccinated either with plasmid DNA encoding the S2 domain (residues 681-1120), the recombinant S2 fragment (residues 681-980) in incomplete Freund's adjuvant, or with inactivated SARS-CoV. The increased number of specific cytotoxic cells (CTLs) and the high titer of specific antibody showed stimulation of both arms of the immune system in these groups. The shift in cytokines suggested that Th1-polarized immune response was induced by plasmid pCoVS2, meanwhile the Th2-dominant response was induced by recombinant S2 fragment and inactivated vaccine. However, the titer of neutralizing antibodies was only detectable in mice immunized with inactivated virus, but not with pCoVS2 plasmid. Taken together, the S2 domain could induce specific cellular immune response and a high level of total IgG but little neutralizing antibodies against infection by SARSCoV.  相似文献   

14.
SARS-CoV是引起严重急性呼吸道综合症(SARS)的病原体.更多地了解SARS-CoV的基因组、蛋白结构以及它与其它冠状病毒的关系,将有助于SARS疾病的防治.  相似文献   

15.
Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.  相似文献   

16.
Bats have been recognized as the natural reservoirs of a large variety of viruses. Special attention has been paid to bat coronaviruses as the two emerging coronaviruses which have caused unexpected human disease outbreaks in the 21st century, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), are suggested to be originated from bats. Various species of horseshoe bats in China have been found to harbor genetically diverse SARS-like coronaviruses. Some strains are highly similar to SARS-CoV even in the spike protein and are able to use the same receptor as SARS-CoV for cell entry. On the other hand, diverse coronaviruses phylogenetically related to MERS-CoV have been discovered worldwide in a wide range of bat species, some of which can be classified to the same coronavirus species as MERS-CoV. Coronaviruses genetically related to human coronavirus 229E and NL63 have been detected in bats as well. Moreover, intermediate hosts are believed to play an important role in the transmission and emergence of these coronaviruses from bats to humans. Understanding the bat origin of human coronaviruses is helpful for the prediction and prevention of another pandemic emergence in the future.  相似文献   

17.
Fragment 450-650 of the spike (S) protein (S450-650) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains epitopes capable of being recognized by convalescent sera of SARS patients. Vaccination of mice with recombinant S450-650 (rS450-650) can induce Abs against SARS-CoV, although the titer is relatively low. In the present study, a fusion protein linking a fragment (residues 39-272) of murine calreticulin (CRT) to S450-650 in a prokaryotic expression system was created. Compared with target antigen alone, the recombinant fusion product (rS450-650-CRT) has much improved hydrophilicity and immunogenicity. The S450-650-specific IgG Abs of BALB/c mice subcutaneously immunized with rS450-650-CRT were in substantially higher titer (approximately fivefold more). Furthermore, the fusion protein, but not rS450-650 alone, was able to elicit S450-650-specific IgG responses in T cell deficient nude mice. Given that rCRT/39-272 can drive the maturation of bone-marrow-derived dendritic cells, directly activate macrophages and B cells, and also elicit helper T cell responses in vivo, we propose that fragment 39-272 of CRT is an effective molecular adjuvant capable of enhancing target Ag-specific humoral responses in both a T cell-dependent and independent manner. Fusion protein rS450-650-CRT is a potential candidate vaccine against SARS-CoV infection.  相似文献   

18.
Lee JS  Poo H  Han DP  Hong SP  Kim K  Cho MW  Kim E  Sung MH  Kim CJ 《Journal of virology》2006,80(8):4079-4087
Induction of mucosal immunity may be important for preventing SARS-CoV infections. For safe and effective delivery of viral antigens to the mucosal immune system, we have developed a novel surface antigen display system for lactic acid bacteria using the poly-gamma-glutamic acid synthetase A protein (PgsA) of Bacillus subtilis as an anchoring matrix. Recombinant fusion proteins comprised of PgsA and the Spike (S) protein segments SA (residues 2 to 114) and SB (residues 264 to 596) were stably expressed in Lactobacillus casei. Surface localization of the fusion protein was verified by cellular fractionation analyses, immunofluorescence microscopy, and flow cytometry. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA, as demonstrated by enzyme-linked immunosorbent assays using S protein peptides. More importantly, these antibodies exhibited potent neutralizing activities against severe acute respiratory syndrome (SARS) pseudoviruses. Orally immunized mice mounted a greater neutralizing-antibody response than those immunized intranasally. Three new neutralizing epitopes were identified on the S protein using a peptide neutralization interference assay (residues 291 to 308, 520 to 529, and 564 to 581). These results indicate that mucosal immunization with recombinant L. casei expressing SARS-associated coronavirus S protein on its surface provides an effective means for eliciting protective immune response against the virus.  相似文献   

19.
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia with a fatal outcome in approximately 10% of patients. SARS-CoV is not closely related to other coronaviruses but shares a similar genome organization. Entry of coronaviruses into target cells is mediated by the viral S protein. We functionally analyzed SARS-CoV S using pseudotyped lentiviral particles (pseudotypes). The SARS-CoV S protein was found to be expressed at the cell surface upon transient transfection. Coexpression of SARS-CoV S with human immunodeficiency virus-based reporter constructs yielded viruses that were infectious for a range of cell lines. Most notably, viral pseudotypes harboring SARS-CoV S infected hepatoma cell lines but not T- and B-cell lines. Infection of the hepatoma cell line Huh-7 was also observed with replication-competent SARS-CoV, indicating that hepatocytes might be targeted by SARS-CoV in vivo. Inhibition of vacuolar acidification impaired infection by SARS-CoV S-bearing pseudotypes, indicating that S-mediated entry requires low pH. Finally, infection by SARS-CoV S pseudotypes but not by vesicular stomatitis virus G pseudotypes was efficiently inhibited by a rabbit serum raised against SARS-CoV particles and by sera from SARS patients, demonstrating that SARS-CoV S is a target for neutralizing antibodies and that such antibodies are generated in SARS-CoV-infected patients. Our results show that viral pseudotyping can be employed for the analysis of SARS-CoV S function. Moreover, we provide evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号