首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
陆利民  李海雁  江蓉  姚泰 《生理学报》1997,49(2):235-240
用PCR方法对原始模板进行单碱基突变,在原始模板DNA的特定位点引入一个EcoRI酶切位点。单碱基突变的DNA经PCR扩增后定量、稀释,作为内标加入到样品中与待测DNA同时进行PCR扩增.扩增产物经酶切后电泳,根据电泳结果中不同分子量DNA片段的含量,对样品中待测基因拷贝数进行定量分析。实验结果观察到:每1μg肝脏组织总RNA经逆转录后AVPV1受体cDNA拷贝数约1.25×10-20mol。  相似文献   

2.
【目的】在昆虫基因功能等相关研究中,通常需要利用单对交配策略来筛选纯合突变品系,如何在配对前确定个体基因型同时又不对昆虫造成损伤,显得尤为重要。本文旨在探讨利用末龄幼虫蜕和蛹壳进行单头昆虫的无损伤基因检测方法。【方法】针对大小不同的3种鳞翅目昆虫斜纹夜蛾Spodoptera litura Fabricius、二点委夜蛾Athetis lepigone M?schler和小菜蛾Plutella xyllostella Linnaeus,收集末龄幼虫蜕及蛹壳,利用常规分子生物学技术进行基因组DNA提取、靶标基因PCR扩增、琼脂糖凝胶电泳检测、连接转化和单克隆测序验证。【结果】从斜纹夜蛾、二点委夜蛾末龄幼虫蜕和蛹壳提取的基因组DNA,以其为模板对GOBP1基因进行PCR扩增,产物经琼脂糖凝胶电泳检测得到单一、明显的条带,进一步经连接转化和单克隆测序得到目的序列;但由于小菜蛾末龄幼虫蜕和蛹壳太小,以同样方法提取的基因组DNA浓度太低,PCR产物经电泳检测,未能得到目的条带。【结论】对于与斜纹夜蛾和二点委夜蛾相近或更大的昆虫,可以利用单头末龄幼虫蜕或蛹壳提取基因组DNA,通过常规PCR技术克隆特定基因序列,为突变品系筛选过程中昆虫个体的无损伤基因型检测提供了方法。  相似文献   

3.
以人工合成的微卫星序列 (GTG) 5,(GT) 8,(CAC) 5和人源小卫星 33 1 5作引物 ,扩增纵纹腹小的基因组DNA ,产生多态性DNA片段 ,回收了 8个表现个体特异性的片段。当用小的基因组总DNA探针与它们杂交时 ,其中 2个表现阳性 ,说明PCR方法扩增出的高变异产物含有重复序列。用含重复序列的个体特异性PCR产物作探针 ,与无关个体小基因组DNA的HaeⅢ酶切产物进行DNA印迹 ,获得了变异性较高的DNA指纹图谱。且通过对京白鸡家系分析表明 ,用小基因组DNA的PCR产物分离制备的探针所获得的DNA指纹图带能够稳定的遗传。因此 ,高变异的PCR产物可以有效地用作DNA指纹探针。  相似文献   

4.
宋书娟  闫明  王小竹  章远志  邹俊华  钟南 《遗传》2007,29(7):800-804
在两个X连锁显性腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT) 家系中进行了GJB1基因的突变分析。提取基因组DNA, PCR(polymerase chain reaction)反应扩增GJB1基因编码序列, 进行单链构象多态性(single strand conformational polymorphism, SSCP)分析, 对有差异SSCP带型的PCR产物进行测序, 结果在两家系中发现同一GJB1基因c.622G→A (Glu208Lys)突变。所发现的突变位点在国内尚未报道。  相似文献   

5.
为分析鸡GDF5基因的遗传多样性及结构与功能,本试验采用DNA池结合PCR产物直接测序法和生物信息学对9个鸡品种11种样品的GDF5基因进行研究。试验共检测出10个SNPs,且全为同义突变,突变后RNA二级结构发生变化,自由能变小,稳定性随之增强;GDF5蛋白存在信号肽,成熟肽始于第19位氨基酸;同源模建预测得到的蛋白结构模型理想可靠。结果表明GDF5基因具有丰富的多态性,生物信息学结果可为进一步研究GDF5基因的作用机制和GDF5蛋白功能提供理论基础。  相似文献   

6.
以人工合成的微卫星序列(GTG)5,(GT)8,(CAC)5和人源小卫星33.15作引物,扩增纵纹腹小Hao的基因组DNA,产生多态性DNA片段,回收了8个表现个体特异性的片段,当用小Hao的基因组总DNA探针与它们杂交时,其中2个表现阳性,说明PCR方法扩增出的高变异产物含有重复序列,用含重复序列的个体特异性PCR产物作探针,与无关个体小Hao基因组DNA的HaeⅢ酶切产物进行DNA印迹,获得了变性性较高的DNA指纹图谱,且通过对京白鸡家系分析表明,用小Hao基因组DNA 的PCR产物分离制备的探针所获得的DNA指纹图带能够稳定的遗传,因此,高变异的PCR产物可以有效地用作DNA指纹探针。  相似文献   

7.
对一个中国汉族Gilbert综合征遗传家系致病基因突变位点进行鉴定,以期了解该病的分子遗传学基础。首先提取先证者基因组DNA,PCR扩增尿苷二磷酸葡萄糖醛酸转移酶UGT1A1基因的5个外显子,以琼脂糖电泳鉴定PCR产物,纯化后直接测序鉴定。基因扫描显示,与血清胆红素水平密切相关的UGT1A1基因在第1和第5外显子存在纯合突变,而 UGT1A1基因启动子区域和内含子/外显子剪接边界位点序列未检测到突变。进一步对其他家系成员该基因的相应位点进行突变检测,结果显示他们在第1和第5外显子也存在杂合突变,其中还有两个成员在启动子区域检测到(TA)插入突变。对家系成员未抗凝新鲜血液进行生化检测证实了基因突变分析的结果。综合以上结果发现该家系三种突变并存,致病因素为第1和/或第5外显子突变,为显性遗传,两种突变位点纯合导致先证者出现严重胆红素代谢功能障碍。该家系因此成为Gilbert综合征突变位点及其致病机理研究的一个典型临床病例。  相似文献   

8.
DNA 池结合DHPLC 和直接测序技术在江豚SNPs 检测中的应用   总被引:6,自引:0,他引:6  
选取江豚基因组中的2 个已知单核苷酸多态性(single nucleotide polymorphisms,SNPs)位点,通过PCR 扩增,将PCR 产物按基因频率不同制备成0 ~ 50% 的11 个DNA 池(DNA pool),用于变性高效液相色谱(denaturing high performance liquid chromatography,DHPLC)和直接测序分析,以探讨DNA 池中基因频率的最低要求。结果显示,当稀有等位基因的基因频率不少于5% 时可在DHPLC 检测过程中明显分辨;而利用DNA 池进行直接测序时的基因频率则需达到10% 。这提示,为保证DHPLC 分析的准确性和可靠性,制备DNA 池时等摩尔DNA 混合的个体数最好不超过10 个。DNA 池结合DHPLC 技术的高效性与准确性可在大规模的SNPs 位点筛选中发挥作用。  相似文献   

9.
目的:建立快速、特异检测载脂蛋白E(ApoE)基因型的方法.方法:采用碱裂解法抽提漱口水来源的颊粘膜上皮细胞的基因组DNA;优化各种改善高GC含量的的添加剂种类和浓度,包括二甲亚枫、甘油、甲酰胺、甜菜硷等,PCR产物进行HhaI酶切并DNA垂直电泳从而分析个体的ApoE基因型.结果:漱口水来源的基因组DNA能替代外周血DNA进行PCR扩增.甜菜碱、甲酰胺、甘油等对于ApoE4基因的扩增效果并不明显,而5%DMSO能显著提高ApoE4基因的扩增效率,并显著提高PCR扩增的特异性.结论:无创的简单的ApoE4基因分型被建立,极大易化了对ApoE4相关疾病的分子流行病的研究,对于其它基因的基因型研究提供有益的线索.  相似文献   

10.
目的:直接针对秀丽线虫进行PCR反应,以便快速扩增基因组DNA,从而提高钓取目的基因和鉴定基因组是否发生突变的效率.方法:根据生物信息学分析,针对不同基因设计单重或多重PCR引物;在不含砌DNA聚合酶的PCR反应体系中加入蛋白酶K消化秀丽线虫染色体中的组蛋白,然后加入Taq酶,直接针对野生型或突变型秀丽线虫个体进行PC...  相似文献   

11.
Dominant white, Dun, and Smoky are alleles at the Dominant white locus, which is one of the major loci affecting plumage color in the domestic chicken. Both Dominant white and Dun inhibit the expression of black eumelanin. Smoky arose in a White Leghorn homozygous for Dominant white and partially restores pigmentation. PMEL17 encodes a melanocyte-specific protein and was identified as a positional candidate gene due to its role in the development of eumelanosomes. Linkage analysis of PMEL17 and Dominant white using a red jungle fowl/White Leghorn intercross revealed no recombination between these loci. Sequence analysis showed that the Dominant white allele was exclusively associated with a 9-bp insertion in exon 10, leading to an insertion of three amino acids in the PMEL17 transmembrane region. Similarly, a deletion of five amino acids in the transmembrane region occurs in the protein encoded by Dun. The Smoky allele shared the 9-bp insertion in exon 10 with Dominant white, as expected from its origin, but also had a deletion of 12 nucleotides in exon 6, eliminating four amino acids from the mature protein. These mutations are, together with the recessive silver mutation in the mouse, the only PMEL17 mutations with phenotypic effects that have been described so far in any species.  相似文献   

12.
PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)--which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core--are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW-associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi-like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid.  相似文献   

13.
In the chicken, Dominant white is one of the major loci affecting feather color. Germline chimeric chickens are identified by testcross analysis using this genetic marker. The testcross, however, is a time-consuming and laborious procedure, resulting in the need for a faster and simpler molecular method. A recent study showed that Dominant white was exclusively associated with a 9-bp insertion in the PMEL17 gene. We searched for breed-specific sequence polymorphisms in the PMEL17 gene among White Leghorn (WL) (white feather), Korean Ogol Chicken (KOC) (black feather), and Barred Plymouth Rock (grayish-white, each feather regularly crossed with parallel blue-black bars). In addition to the 9-bp insertion, WLs and KOCs have unique bases in single nucleotide polymorphisms (SNPs) at the 1,777th and 3,118th bases in the PMEL17 gene. To detect these sequence polymorphisms, allele-specific polymerase chain reaction (AS-PCR) was performed, which successfully distinguished the different breeds. We confirmed the ability of the AS primers to detect germline chimerism. This simple method can be widely used for the screening of germline chimeric chickens.  相似文献   

14.
Mutations in KIT encoding the mast/stem cell growth factor receptor (MGF) are responsible for coat color variation in domestic pigs. The dominant white phenotype is caused by two mutations, a gene duplication and a splice mutation in one of the copies leading to skipping of exon 17. Here we applied minisequencing and pyrosequencing for quantitative analysis of the number of copies with the splice form. An unexpectedly high genetic diversity was revealed in white pigs. We found four different KIT alleles in a small sample of eight Large White females used as founder animals in a wild boar intercross. A similar number of KIT alleles was found in commercial populations of white Landrace and Large White pigs. We provide evidence for at least two new KIT alleles in pigs, both with a triplication of the gene. The results imply that KIT alleles with the duplication are genetically unstable and new alleles are most likely generated by unequal crossing over. This study provides an improved method for genotyping the complicated Dominant white/KIT locus in pigs. The results also suggest that some alleles may be associated with negative pleiotropic effects on other traits.  相似文献   

15.
The Belt mutation in pigs is an allele at the Dominant white (I/KIT) locus   总被引:6,自引:0,他引:6  
A white belt is a common coat color phenotype in pigs and is determined by a dominant allele (Be). Here we present the result of a genome scan performed using a Hampshire (Belt)/Pietrain (non-Belt) backcross segregating for the white belt trait. We demonstrate that Belt maps to the centromeric region of pig Chromosome (Chr) 8 harboring the Dominant white (I/KIT) locus. Complete cosegregation between Belt and a single nucleotide polymorphism in the KIT gene was observed. Another potential candidate gene, the endothelin receptor type A gene (EDNRA), was excluded as it was assigned to a different region (SSC8q21) by FISH analysis. We argue that Belt is a regulatory KIT mutation on the basis of comparative data on mouse KIT mutants and our previous sequence analysis of the KIT coding sequence from a Hampshire pig. Quantitative PCR analysis revealed that Belt is not associated with a KIT duplication, as is the case for the Patch and Dominant white alleles. Thus, Belt is a fourth allele at the Dominant white locus, and we suggest that it is denoted I Be . Received: 5 May 1999 / Accepted: 3 August 1999  相似文献   

16.
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ~50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ~82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.  相似文献   

17.
Bardet-Biedl syndrome (BBS) is a rare, primarily autosomal-recessive ciliopathy. The phenotype of this pleiotropic disease includes retinitis pigmentosa, postaxial polydactyly, truncal obesity, learning disabilities, hypogonadism and renal anomalies, among others. To date, mutations in 15 genes (BBS1-BBS14, SDCCAG8) have been described to cause BBS. The broad genetic locus heterogeneity renders mutation screening time-consuming and expensive. We applied a strategy of DNA pooling and subsequent massively parallel resequencing (MPR) to screen individuals affected with BBS from 105 families for mutations in 12 known BBS genes. DNA was pooled in 5 pools of 21 individuals each. All 132 coding exons of BBS1-BBS12 were amplified by conventional PCR. Subsequent MPR was performed on an Illumina Genome Analyzer II? platform. Following mutation identification, the mutation carrier was assigned by CEL I endonuclease heteroduplex screening and confirmed by Sanger sequencing. In 29 out of 105 individuals (28%), both mutated alleles were identified in 10 different BBS genes. A total of 35 different disease-causing mutations were confirmed, of which 18 mutations were novel. In 12 additional families, a total of 12 different single heterozygous changes of uncertain pathogenicity were found. Thus, DNA pooling combined with MPR offers a valuable strategy for mutation analysis of large patient cohorts, especially in genetically heterogeneous diseases such as BBS.  相似文献   

18.
19.
The mast/stem cell growth factor receptor (KIT) and melanocortin receptor 1 (MC1R) mutations are responsible for coat color phenotypes in domestic pigs. Rongchang is a Chinese indigenous pig breed with a white coat color phenotype. To investigate the genetic variability of the KIT and MC1R genes and their possible association with the coat color phenotype in this breed, a gene duplication and splice mutation of KIT were diagnosed in a sample of 93 unrelated Rongchang animals. The results show that Rongchang pigs have a single copy of KIT without the splice mutation at the first nucleotide of intron 17, indicating that the dominant white I allele of KIT is not responsible for their white phenotype. The KIT mRNA and MC1R coding sequences were also determined in this breed. Three putative amino acid substitutions were found in the KIT gene between Rongchang and Western white pigs, their association with the Rongchang white phenotype remains unknown. For the MC1R gene, Rongchang pigs were demonstrated to have the same dominant black allele (E(D1)) as other Chinese breeds, supporting the previous conclusion that Chinese and Western pigs have independent domestication origin. We also clarified that the Rongchang white phenotype was recessive to nonwhite color phenotypes. Our results provide a good starting point for the identification of the mutations underlying the white coat color in Rongchang pigs.  相似文献   

20.
混合DNA样品池扩增法及其应用   总被引:2,自引:0,他引:2  
将个体 DNA提取出来后 ,按一定方式进行混合 ,构成混合 DNA样品池。这种混合 DNA样品可用于病因未明的遗传性及遗传易感性疾病的研究。在研究常染色体隐性遗传性耳聋致病基因时 ,发现与染色体 9q的 D9S92 2和 D9S30 1位点有相关性。此方法比通常的连锁分析法省时省力。在肿瘤相关基因或责任基因的研究、法医学的个体认定、基因突变的检测等方面均显示出实用性 ,值得推广  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号