首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
以催化合成普瑞巴林中间体(3 S)-2-羧乙基-3-氰基-5-甲基己酸为目标,通过基因挖掘得到来源为嗜热踝节菌的脂肪酶氨基酸序列,构建了基因工程菌Escherichia coli BL21/p ET28b-TTL,在16℃成功诱导表达了嗜热踝节菌脂肪酶TTL。分离纯化得到TTL电泳纯酶,其最适反应温度为50℃,在50℃的半衰期为14.5 d,表明TTL具有良好的热稳定性;TTL最适p H为8.0,在p H 7.0~8.5时稳定性好。TTL在50℃、p H 8.0条件下,催化100 mmol/L外消旋2-羧乙基-3-氰基-5-甲基己酸乙酯水解转化率达42%以上,产物的对映体过量值(e.e.值)94%。这表明TTL在化学-酶法合成普瑞巴林中具有较大应用潜力。  相似文献   

2.
海藻糖酶(Trehalase)是一种海藻糖水解酶,能够特异性的将海藻糖分解为两分子的葡萄糖。为了将Escherichia coli str.K-12 substr.MG1655的海藻糖酶基因Tre F在E.coli BL21(DE3)中重组表达和应用,该研究通过PCR扩增获得E.coli str.K-12 substr.MG1655的海藻糖酶基因Tre F,构建了基因工程菌E.coli BL21(DE3)/p ET-24a(+)-Tre F。对重组菌进行摇瓶发酵,25℃,IPTG浓度为0.4 mmol/L时,摇瓶发酵诱导24 h时得到最高酶活为107 U/m L。进一步研究了海藻糖酶的酶学性质,发现该海藻糖酶的最适p H为7.0,最适温度为50℃;此外,将该酶应用于海藻糖的水解,起始海藻糖浓度为300 g/L,初始p H 7.0、反应温度30℃,加酶量为84 U/g,反应36 h,葡萄糖转化率可达98.4%。该研究是首次将E.coli str.K-12 substr.MG1655海藻糖酶基因Tre F在E.coli BL21(DE3)宿主中重组表达的报道。  相似文献   

3.
极耐热性β-葡萄糖醛酸酶的高效表达和酶学性质及其应用   总被引:1,自引:1,他引:0  
从海栖热袍菌克隆出编码热稳定性β-葡萄糖醛酸酶基因,以热激载体pHsh为表达质粒,在大肠杆菌中得到高效表达。基因表达产物通过一步热处理后,酶纯度达电泳均一。纯化重组酶酶学性质研究表明,β-葡萄糖醛酸酶的最适反应温度为80℃,最适反应pH为5.0,pH5.8~8.2之间酶的稳定性较好,80℃的半衰期为2h,SDS—PAGE结果显示分子量为65.9kD,与理论推算值相吻合。以对硝基苯-β-葡萄糖醛酸苷(pN/PG)为底物时,其动力学参数Km值0.18mmol/L,Vmax值为312u/mg。初步的应用分析表明,该重组酶能催化甘草酸转化为甘草次酸。  相似文献   

4.
6_磷酸果糖激酶(PFK)是糖酵解途径一个关键酶。基于腾冲嗜热厌氧菌基因组中的注释,基因TTE1816可能是PFK的一种,但是,它是否确有生物活性还必须有实验数据的支持。腾冲嗜热厌氧菌在最适温度培养后,提取细菌全蛋白,并采用双向电泳将可溶性蛋白质分离,然后运用质谱鉴定若干染色斑点。实验表明,TTE1816在高温条件下能够表达蛋白质。将TTE1816基因体外克隆至细菌表达载体,并在BL_21大肠杆菌中表达为可溶性蛋白。酶动力学实验表明,重组蛋白TTE1816具有PFK的催化活性,最适反应温度在60℃。它还能够催化葡萄糖、果糖、甘露糖和6_磷酸葡萄糖的磷酸化反应。另外,在高底物浓度和酶浓度的条件下,TTE1816还表现果糖二磷酸酶的特性。结果证明,TTE1816是腾冲嗜热厌氧菌中PFK家族的一个新成员。  相似文献   

5.
海栖热袍菌(Thermotoga maritima)是嗜极端高温的厌氧细菌,其产生的葡萄糖异构酶由于其出色的耐热性有着潜在的工业应用价值.由于海栖热袍菌苛刻的培养条件导致其葡萄糖异构酶产量较低.通过PCR方法克隆编码T. maritima MSB8葡萄糖异构酶基因xylA,构建重组质粒pHsh-xylA,转入Escherichia coli JM109,通过热激诱导表达.通过热处理和离子交换层析纯化两步得到电泳纯的酶制品,纯化倍数和回收率分别为8.02和49.02.对酶学性质研究表明,该重组酶为金属离子激活性酶,Mg2 ,Co2 对相对酶活有很强的激活作用,其最适pH为7.0,最适反应温度为95℃,且在pH 6~8之间有着较好的稳定性,在95℃下半衰期长达5 h以上.以葡萄糖为底物时的表观Km和Vmax分别为105 mmol/L和45.2 mol/min·mg.  相似文献   

6.
海藻糖微生物酶法合成机制的研究*   总被引:1,自引:0,他引:1       下载免费PDF全文
来源于嗜酸热古菌芝田硫化叶菌 (Sulfolobusshibatae)B1 2的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶 (MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶 ,分别以麦芽寡糖和淀粉为转化底物 ,在pH5 5 ,6 0℃条件下合成海藻糖。从反应产物分析结果可知 ,两个酶合成海藻糖时能利用的最小底物是麦芽四糖 ,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α 1 ,4 葡萄糖苷酶活性 ,能在麦芽寡糖还原末端水解α 1 ,4糖苷键  相似文献   

7.
海藻糖是相容性溶质的一种,因其具有多种生物学功能,在食品、化妆品、药品以及器官移植等方面均有很广泛应用。然而近几年生产海藻糖主要集中在使用酶催化的方法,虽然这种方法的转化效率高,但是却存在着副产物的问题,难以得到高纯度的海藻糖产品,严重制约了海藻糖的应用。本文通过基因工程技术在大肠杆菌Escherichia coli中构建了海藻糖高效合成新途径,通过全细胞催化合成海藻糖。利用PCR技术在哈氏噬纤维菌Cytophaga hutchinsonii中克隆获得海藻糖双功能合成酶基因(tpsp),采用E.coli pTac-HisA高效表达载体,实现海藻糖双功能合成酶基因(tpsp)高效表达,利用高效表达菌株进行全细胞催化,将葡萄糖高效转化为海藻糖。结果表明C.hutchinsonii海藻糖合成酶基因(tpsp)在E.coli中成功实现表达,该酶能够在胞内将葡萄糖高效转化为海藻糖,并将其转运到胞外,实现海藻糖的高效率合成,海藻糖的产量提高到1.2 g/L,相对转化率为21%。当将此高产菌株在发酵罐中进行转化时,海藻糖的产量达到13.3 g/L,葡萄糖的相对转化率达到48.6%。采用C.hutchinsonii海藻糖合成酶基因高效表达并且应用于海藻糖全细胞合成催化在国内外尚属首次报道,海藻糖的转化率及产率都已达到文献报道最高水平,本研究为开拓海藻糖生产新技术奠定了基础。  相似文献   

8.
将来源于Bacillus sp 602 -1的α-环糊精葡萄糖基转移酶(ot-CGT)基因(cgt)插入到表达载体PQE30中,构建重组质粒PQE30/cgt,成功转化宿主菌E coli M15后,得到重组菌株E coli M15 (PQE30/cgt).在IPTG的诱导下得到酶表达的最适条件:TB培养基,0.01 mmol/L IPTG,诱导温度16℃,胞内酶比活力最高可达5 209 U/mL;加入IPTG 24 h后,添加甘氨酸和甘露醇会促使酶向胞外分泌.酶蛋白自诱导表达的适宜条件为在TB培养基中添加乳糖3.0 g/L,葡萄糖1.2 g/L,16℃培养96 h,酶比活力达到8 635 U/mL,明显高于IPTG诱导的效果.通过SDSPAGE验证了上述结论.酶催化转化实验表明:重组酶转化质量分数为1%可溶淀粉24h后,α-环糊精(α-CD)转化率可达38.2%,α和β的峰面积比约为3.4:1,α-CD具有较高的专一性,因此该重组α-CGT酶具有较好的工业化应用前景.  相似文献   

9.
从恒化富集培养物中分离到一株产肌酸酶的菌株WB1,通过对该菌的形态学、生理生化特性、G+C mol%及16S rDNA序列分析,表明该菌为一株副球菌(Paracoccus sp.)。对菌株WB1产酶发酵条件的研究表明,该菌除了产生肌酸酶外还产生肌氨酸脱氢酶,但不产生肌酸酐酶,也不能利用肌酸酐。肌酸酶可以被诱导物,如肌氨酸、肌酸、和氯化胆碱诱导产生。葡萄糖等易用碳源的存在对肌酸酶的合成无代谢产物阻遏作用。该酶的分子量为48kD,最适反应pH为7.0~8.5,pH稳定范围在6.0~9.5之间;其最适反应温度在35℃~40℃之间,在45℃以下是热稳定的; 37℃时以肌酸为底物,酶的Km值为24.6mmol/L;Cu2+、Hg2+和Ag+对酶活性有强烈的抑制作用。  相似文献   

10.
从海栖热袍菌克隆出编码热稳定性b-葡萄糖醛酸酶基因, 以热激载体pHsh为表达质粒, 在大肠杆菌中得到高效表达。基因表达产物通过一步热处理后, 酶纯度达电泳均一。纯化重组酶酶学性质研究表明, b-葡萄糖醛酸酶的最适反应温度为80oC, 最适反应pH为5.0, pH 5.8~ 8.2之间酶的稳定性较好, 80oC的半衰期为2 h, SDS-PAGE结果显示分子量为65.9 kD, 与理论推算值相吻合。以对硝基苯-b-葡萄糖醛酸苷(pNPG)为底物时, 其动力学参数Km值0.18 mmol/L, Vmax值为312 u/mg。初步的应用分析表明, 该重组酶能催化甘草酸转化为甘草次酸。  相似文献   

11.
海藻糖微生物酶法合成机制的研究   总被引:5,自引:0,他引:5  
来源于嗜酸热古菌芝田硫化叶菌(Sulfolobus shibatae)B12的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶(MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶,分别以麦芽寡糖和淀粉为转化底物,在pH5.5,60℃条件下合成海藻糖。从反应产物分析结果可知,两个酶合成海藻糖时能利用的最小底物是麦芽四糖,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α-1,4-葡萄糖苷酶活性,能在麦芽寡糖还原末端水解α-1,4糖苷键,生成葡萄糖分子,其反应最小底物分别是麦芽三糖和四糖。推测海藻糖合成酶可能有两个不同的催化活性中心。  相似文献   

12.
S-腺苷甲硫氨酸合成酶反应条件的优化   总被引:3,自引:0,他引:3  
优化了重组毕赤酵母表达的S-腺苷甲硫氨酸合成酶催化L-甲硫氨酸(Met)和ATP合成 S-腺苷甲硫氨酸的条件,确定了该酶的最适酶活力检测条件为20mmol/L的L -Met,26mmol/ L的ATP,52mmol/L的MgCl2,300mmol/L的KCl,8mmol/L的还原型谷胱甘肽,100mmol/ L的Tris,反应液pH 8.5,35°C反应 1h,比活力达到23.84U/mg.该酶还可以催化以DL-Met代替L-Met为底物的S-腺苷甲硫氨酸合成反应,以降低生产成本.  相似文献   

13.
产1,3-丙二醇新型重组大肠杆菌的构建   总被引:9,自引:1,他引:8  
利用PCR技术从大肠杆菌(Escherichia coli )中扩增出1.16 kb的编码1,3-丙二醇氧化还原酶同工酶的基因yqhD,将其连接到表达载体pEtac,得到重组载体pEtac-yqhD,重组载体在大肠杆菌JM109中得到高效表达。SDS_PAGE分析显示融合表达产物的分子量均为43 kD,同核酸序列测定所推导的值相符。对含有yqh-D的基因工程菌进行表达研究表明:37 ℃,以1.0 mmol /L IPTG诱导4 h,1,3-丙二醇氧化还原酶同工酶的酶活力达到120 u/mg蛋白,而对照菌株的酶活力为0.5 u/mg蛋白。再将含甘油脱水酶基因dhaB和含1,3-丙二醇氧化还原酶同工酶基因yqhD的重组质粒共转化大肠杆菌JM109得到重组大肠杆菌JM109(pUCtac-dhaB, pEtac-yqhD),该菌株在好氧条件下,以1.0mmol/L IPTG诱导可将50 g/L甘油转化为38.0 g/L 1,3-丙二醇。首次发现1,3-丙二醇氧化还原酶同工酶在好氧条件下表现出较高的活性。  相似文献   

14.
从氧化葡萄糖酸杆菌(Gluconobacter oxydans)的基因组DNA上扩增出木糖醇脱氢酶基因xdh,构建了诱导型表达载体pSE-xdh,导入E.coli JM109后获得了高效表达木糖醇脱氢酶基因的重组菌JM109/pSE-xdh。通过HisTrap HP亲和层析和SephacrylS 300分子筛两步纯化从细胞中得到纯酶,并对酶学性质进行研究。XDH最适还原反应的pH值为5.0,最适还原反应的温度为35℃;最适氧化反应的pH值为11.0,最适氧化反应的温度为30℃。重组菌中的XDH依赖NADH,对NADH的米氏常数Km=57.8 mmol/L,最大反应速率Vmax=1209.1 mmol/(ml·min)。重组菌的XDH酶活力为13.9 U/mg。利用重组菌和原始菌混合静止细胞转化D 木酮糖,16 h 28.0 g/L D木酮糖生成16.7 g/L木糖醇,而原始菌单独转化只生成8.3 g/L木糖醇。  相似文献   

15.
研究了芳腈水合酶催化水合3-氰基吡啶生成尼克酰胺的反应条件及影响因子.酶反应的最适pH为8.0,最适温度为25℃.酶在pH8.5于25℃保温4小时或在25—30℃于pH8.0保温3小时是稳定的.反应液中加入Fe~(3+)(1.5 mmol/L)可使酶活力增加 50%,而加入NH_4~+(300 mmol/L)则使酶活降低了67%.Ag~+和 Hg(2+)”强烈地抑制酶反应活性,在浓度均为 5mmol/L时,抑制率分别为99.7%和100%.NaCN(50 mmol/L)和苯甲腈(100 mmol/L)对酶活性的抑制率分别为78%和85%.该酶作用于 3-氰基吡啶的Km为62.5 mmol/L,V_(max)为85.8 μmol·min~(-1)·mg~(-1).  相似文献   

16.
碱性嗜热过氧化氢酶是一种重要的纺织用酶。根据大肠杆菌密码子使用偏爱性,对Thermus thermophilus HB27来源的含锰过氧化氢酶基因进行密码子优化,将优化后的基因连接至表达载体pET28a(+)上,转化到E.coli BL21(DE3)中进行诱导表达。结果表明在含有14mmol/L Mn2+浓度的培养液中以0.2 mmol/L的IPTG 42℃条件下诱导2 h的情况下,菌体破碎上清液中的酶活力可达25 U/ml。利用Ni亲和层析柱对该Mn-CAT进行纯化,酶学性质研究表明:此酶的最适温度为70℃,最适pH为pH 10.0,在80℃保温2 h,酶活力不损失;pH9.0~11.0的环境中放置2 h后,酶活仅损失约10%,此酶具有良好的工业开发潜力。  相似文献   

17.
目的:克隆玫瑰链霉菌海藻糖合成酶基因(Srt)使其在大肠杆菌XL10-Gold中高效表达,并对重组酶的酶学特性进行研究。方法:利用PCR技术从玫瑰链霉菌中克隆到一段长1 704bp的海藻糖合成酶基因(Srt),构建重组表达质粒pSE380-Srt-treS,将其转化大肠杆菌XL10-Gold中诱导表达,对重组纯酶进行SDS-PAGE分析及酶学特性测定。结果:SDS-PAGE显示在65kDa处有明显单一蛋白条带。该酶可催化麦芽糖和海藻糖之间的可逆反应,海藻糖得率达82%,且含有很低的副产物葡萄糖(5%左右)。最适反应温度和pH分别为30℃、7.5,Cu2+、Zn2+和Tris能明显抑制酶活力。该酶还可催化蔗糖生成一种无龋齿,适合糖尿病患者食用的糖类-海藻酮糖。结论:成功克隆表达了一个海藻糖合成酶基因,该酶转化率高,副产物较少,为工业酶法生产海藻糖奠定基础。  相似文献   

18.
根据Thermomyces lanuginosus热稳定几丁质酶Chit的N端氨基酸序列和同源保守序列设计简并引物,通过RTPCR及快速扩增cDNA末端(RACE)的方法,克隆了该几丁质酶的编码基因chit,全长cDNA为1500bp,包含一个由442个氨基酸组成的开放阅读框。该基因已在GenBank中注册,登录号为DQ092332。将成熟肽几丁质酶Chit阅读框与酵母表达载体pPIC9K连接,构建重组质粒pPIC9K/chit,转化毕赤酵母GS115,在甲醇的诱导下,成功地分泌出具生物活性的几丁质酶,诱导6d后酶活性达2.261U/mL,酶蛋白表达量为0.6mg/mL。该酶的最适反应温度和pH 值分别为60℃和5.5,该酶在50℃以下稳定;65℃的半衰期为40min。  相似文献   

19.
从天蓝色链霉菌Streptomyces coelicolor克隆得到海藻糖合酶基因 (ScTreS),在大肠杆菌Escherichia coli BL21(DE3) 中进行了异源表达,通过 Ni-NTA 亲和柱对表达产物进行分离纯化得到纯酶,经 SDS-PAGE 测定其分子量约为62.3 kDa。研究其酶学性质发现该酶最适温度35 ℃;最适pH 7.0,对酸性条件比较敏感。通过同源建模和序列比对分析,对该基因进行定点突变。突变酶K246A比酶活比野生酶提高了1.43倍,突变酶A165T相对提高了1.39倍,海藻糖转化率分别提高了14%和10%。利用突变体重组菌K246A进行全细胞转化优化海藻糖的合成条件并放大进行5 L罐发酵,结果表明:在麦芽糖浓度300 g/L、初始反应温度和pH分别为35 ℃和7.0的条件下,转化率最高达到71.3%,产量为213.93 g/L;当底物浓度增加到700 g/L时,海藻糖产量仍可达到465.98 g/L。  相似文献   

20.
α-氨基酸酯酰基转移酶(α-amino acid ester acyltransferase,AET)能够催化底物L-丙氨酸甲酯盐酸盐、L-谷氨酰胺合成L-丙氨酰-L-谷氨酰胺(L-alanyl-L-glutamine,丙谷二肽)。利用重组大肠杆菌saet-QC01表达α-氨基酸酯酰基转移酶,对其表达条件进行了优化,通过Ni-NTA亲和层析法分离纯化重组蛋白,并对其酶学性质、催化应用进行了研究。适合酶表达的诱导条件:温度20℃,诱导阶段(OD_(600)=2.0-2.5),IPTG浓度0.6 mmol/L,诱导时间12 h。α-氨基酸酯酰基转移酶的最适反应温度27℃,最适pH 8.5,在pH 7.0-8.0很稳定,在酸性条件下相对稳定,低浓度的Co~(2+)、低浓度的EDTA对酶活有促进作用。在底物浓度丙氨酸甲酯盐酸盐600 mmol/L、谷氨酰胺480 mmol/L,丙谷二肽的产量达到78.2 g/L,生产速率达到1.955 g/(L·min),转化率达到75.0%。α-氨基酸酯酰基转移酶具有良好的酸碱耐受性,催化效率高的优良特性,在工业生产中具有较好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号