首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
基因改造的1型单纯疱疹病毒(HSV-1)载体在肿瘤溶瘤病毒治疗及基因转导中具有广泛的应用前景。本研究报道一种基于CRISPR-Cas9系统的高效快速的重组HSV-1载体构建方法。首先,双顺反表达靶点g DNA和Cas9核酸酶的基因编辑质粒与同源重组模板质粒共转染Vero细胞后,用亲本株感染细胞;然后,Cas9对胞内病毒基因组定点切割,诱导外源基因同源重组,修复至病毒基因组指定位点。通过PCR、Western印迹、免疫荧光等方法证明,相比于传统自发同源重组的构建方法,该方法能显著提升病毒重组率(4.1%vs 1.1%)。同时,本研究建立了一种新的单克隆病毒纯化方案,简化了阳性病毒筛选步骤。本研究结果提供了一种高效快速的重组HSV-1构建方法,这对于HSV-1相关基因治疗及其病理机制研究将具有重要意义。  相似文献   

2.
基因改造的1型单纯疱疹病毒(HSV-1)载体在肿瘤溶瘤病毒治疗及基因转导中具有广泛的应用前景。本研究报道一种基于CRISPR-Cas9系统的高效快速的重组HSV-1载体构建方法。首先,双顺反表达靶点g DNA和Cas9核酸酶的基因编辑质粒与同源重组模板质粒共转染Vero细胞后,用亲本株感染细胞;然后,Cas9对胞内病毒基因组定点切割,诱导外源基因同源重组,修复至病毒基因组指定位点。通过PCR、Western印迹、免疫荧光等方法证明,相比于传统自发同源重组的构建方法,该方法能显著提升病毒重组率(4.1%vs 1.1%)。同时,本研究建立了一种新的单克隆病毒纯化方案,简化了阳性病毒筛选步骤。本研究结果提供了一种高效快速的重组HSV-1构建方法,这对于HSV-1相关基因治疗及其病理机制研究将具有重要意义。  相似文献   

3.
腺相关病毒 (adeno- associated virus,AAV)属细小病毒科 ,是一种最小的动物病毒 .具有其他病毒载体所没有的优点 ,在基因治疗中日益受到瞩目 .以 AAV的一种多克隆载体为基础 ,构建了携带 MDR1基因的重组腺相关病毒载体 (r AAV- MDR1 ) ,经 2 93细胞包装成重组病毒 .将重组质粒、重组病毒分别转染和感染 NIH3T3细胞 ,用 PCR和 MTT法检测了人 MDR1基因的转导及表达 .为 MDR1基因用于临床和腺相关病毒载体在基因治疗中的应用提供了依据  相似文献   

4.
GDNF重组腺病毒的构建及促进多巴胺能神经元存活的研究   总被引:4,自引:0,他引:4  
利用体内同源重组原理,构建了能介导GDNF基因转移和表达的复制缺陷型重组腺病毒AdCMVgdnf,其中GDNFcDNA插入腺病毒基因组的E1区并由CMV启动子控制在人293细胞内通过同源重组包装生成重组腺病毒后,用形态学方法、病毒DNA酶切分析、PCR和RT-PCR等方法进行鉴定正确.经测定病毒滴度达到1010pfu/ml.用免疫沉淀方法从重组腺病毒感染的293细胞及其培养基上清中均检测到大量GDNF蛋白.用重组腺病毒直接感染或者用其条件培养基处理,分别使胚胎大鼠中脑原代多巴胺能神经元的数目增加88.2%和96.4%,明显增加多巴胺能神经元存活,对帕金森氏病基因治疗具有重要意义  相似文献   

5.
慢病毒载体介导的RNA干扰   总被引:1,自引:0,他引:1  
RNA干扰(RNAinterference)是指由双链RNA分子抑制同源基因的表达。慢病毒载体(lentivirusvector)则是高效的基因转导工具,能将外源序列稳定导入分裂相和非分裂相细胞。将慢病毒载体和RNA干扰结合,能在哺乳动物各类细胞中,特异性抑制同源基因的表达;也是基因功能研究和基因治疗的有力手段。  相似文献   

6.
在以病毒载体介导的基因治疗研究中,重组腺相关病毒(rAAV)因其疗效和安全性方面的优势,是最有临床应用前景的载体。但其转基因包装容量一般不能超过5.0kb,给需要转导大片段基因的应用带来了困难,限制了rAAV在基因治疗研究中的应用。随着对rAAV细胞转导生物学过程研究的不断深入,发现了一些可以突破rAAV包装容量限制的技术,如反式剪接和同源重组策略,为拓展该载体应用范围提供了可能性。另外,rAAV包装容量限制的特点还可以被用来减少生产过程中具有可复制能力的类病毒杂质的污染,为rAAV的临床安全性提供了保障。  相似文献   

7.
目的:构建携带人BNP cDNA片段高效重组腺病毒Ad-hBNP,为实验提供研究工具.方法:从人心肌组织提取的RNA,用RT-PCR方法中获得hBNP扩增片段,与pUCm-T载体连接构成pUC-hBNP重组质粒;用KpnI、SalI分别双酶切pUC-hBNP和pAd-Track-CMV,将目的片段插入pAd-Track-CMV构建重组质粒pAdTrack-CMV-hBNP;pAdTrack-CMV-hBNP重组质粒经Pmcl酶切线性化后,电转法转入含有腺病毒骨架质粒的E.coli BJ5183感受态细胞中,同源重组获得重组质粒pAdEasy-hBNP;经BamHI、PacI酶切鉴定及基因序列检测后,重组成功的pAdEasy-hBNP经阳离子脂质体法转染HEK293T细胞,经过包装、扩增和纯化后,测定病毒滴度,电镜检测病毒形态.结果:转染HEK293T细胞5-6天GFP呈"彗星"状;重组腺病毒滴度为1.1×1012V.P/ml;电镜检测重组腺病毒为多面体结构.结论:应用Ad-Easy缺陷性腺病毒载体系统成功构建重组腺病毒Ad-hBNP,为进一步基因治疗研究提供分子生物学工具.  相似文献   

8.
修饰的痘苗病毒安卡拉株(MVA)基因组中高频的同源重组   总被引:2,自引:1,他引:1  
痘苗病毒由于其外源基因容量大,表达产物后加工完善等优势而广泛用于基因工程的研究以及基因治疗,痘苗病毒基因组的同源重组现象为其基因操作带来了方便,也被用于很多痘苗病毒基因结构和功能的研究,痘苗病毒安卡拉株(MVA)是一种修饰的复制限制的痘苗病毒,由于极高的安全性,正在实验室和临床应用的很多领域取代普通的痘苗病毒,为提高重组MVA系统的安全性以及筛选重组MVA的效率,发展了一种暂时选择系统,此系统利用分子内2段同向的相同序列发生同源重组去除选择标记k1l基因,从而消除选择标记对宿主可能的危害。利用此暂时表达系统构建了4个携带编码不同长度外源多蛋白质序列的重组MVA,并估算了每次传代的重组频率,结果显示,MVA同源重组频率虽然比其他痘苗病毒株要低,但仍然是较斋的,将带有k1l基因的重组MVA经3-4次盲传(blind passage),即可获得完全去除选择标记的重组MVA。进一步证明上述利用暂时选择标记k1l基因构建重组MVA的系统具有十分可靠的安全性,适合作为人体活疫苗开发和基因治疗的载体,而且,通过盲传进行筛选,能大大提高去除选择标记的效率,降低鸺建重组MVA的成本。  相似文献   

9.
为开展肿瘤的复合基因治疗,构建以串联方式携带人野生型p53和B7-1基因的重组腺病毒穿梭质粒pXC53/B7-1。将pXC53/B7-1与腺病毒包装质粒GT4050共转染293细胞,通过细胞内同源重组获得重组腺病毒Ad-p53/B7-1。在293细胞中扩增病毒,并通过氯化铯密度梯度超速离心纯化病毒,获得高滴度稿纯度的病毒,分别经免疫组织化学分析和流式细胞分析检测Ad-p53/B7-1介导的人野生型p53和B7-1基因在喉癌细胞ep-2中的表达。结果表明Ad-p53/B7-1能够有效地将其所携带的目的基因导入Hehp-2细胞并使其在细胞中高效表达。  相似文献   

10.
为了探索定点整合基因治疗血友病B的可行性,开展了在HeLa细胞中的hFIX组成型表达研究.同源重组载体p921构建后,电穿孔转入细胞,经过GCV和G418克隆选择,通过特异性的PCR证实了同源重组的发生,hCMV启动子定点替换hFIX基因在非肝细胞中可以被启动子hCMV转录表达,显示人为进行基因表达调控的可行性.  相似文献   

11.
In human somatic cells, homologous recombination is a rare event. To facilitate the targeted modification of the genome for research and gene therapy applications, efforts should be directed toward understanding the molecular mechanisms of homologous recombination in human cells. Although human genes homologous to members of the RAD52 epistasis group in yeast have been identified, no genes have been demonstrated to play a role in homologous recombination in human cells. Here, we report that RAD54B plays a critical role in targeted integration in human cells. Inactivation of RAD54B in a colon cancer cell line resulted in severe reduction of targeted integration frequency. Sensitivity to DNA-damaging agents and sister-chromatid exchange were not affected in RAD54B-deficient cells. Parts of these phenotypes were similar to those of Saccharomyces cerevisiae tid1/rdh54 mutants, suggesting that RAD54B may be a human homolog of TID1/RDH54. In yeast, TID1/RDH54 acts in the recombinational repair pathway via roles partially overlapping those of RAD54. Our findings provide the first genetic evidence that the mitotic recombination pathway is functionally conserved from yeast to humans.  相似文献   

12.
Gene targeting is a technique that allows the introduction of predefined alterations into chromosomal DNA. It involves a homologous recombination reaction between the targeted genomic sequence and an exogenous targeting vector. In theory, gene targeting constitutes the ideal method of gene therapy for single gene disorders. In practice, gene targeting remains extremely inefficient for at least two reasons: very low frequency of homologous recombination in mammalian cells and high proficiency of the mammalian cells to randomly integrate the targeting vector by illegitimate recombination. One known method to improve the efficiency of gene targeting is inhibition of poly(ADP-ribose)polymerase (PARP). It has been shown that PARP inhibitors, such as 3-methoxybenzamide, could lower illegitimate recombination, thus increasing the ratio of gene targeting to random integration. However, the above inhibitors were reported to decrease the absolute frequency of gene targeting. Here we show that treatment of mouse Ltk cells with 1,5-isoquinolinediol, a recent generation PARP inhibitor, leads to an increase up to 8-fold in the absolute frequency of gene targeting in the correction of the mutation at the stable integrated HSV tk gene.  相似文献   

13.
14.
Production of zebrafish by modifying endogenous growth hormone (GH) gene through homologous recombination is described here. We first constructed the targeting vectors pGHT1.7k and pGHT2.8k, which were used for the knockout/knockin of the endogenous GH gene of zebrafish, and injected these two vectors into the embryos of zebrafish. Overall, the rate of targeted integration with the characteristic of germ line transmission in zebrafish was 1.7×10−6. In one experimental patch, the integrating efficiency of pGHT2.8k was higher than that of pGHT1.7k, but the lethal effect of pGHT2.8k was stronger than that of pGHT1.7k. The clones with the correct integration of target genes were identified by a simple screening procedure based on green fluorescent protein (GFP) and RFP dual selection, which corresponded to homologous recombination and random insertion, respectively. The potential homologous recombination zebrafish was further bred to produce a heterozygous F1 generation, selected based on the presence of GFP. The potential targeted integration of exogenous GH genes into a zebrafish genome at the P0 generation was further verified by polymerase chain reaction and Southern blot analysis. Approximately 2.5% of potential founder knockout and knockin zebrafish had the characteristic of germ line transmission. In this study, we developed an efficient method for producing the targeted gene modification in zebrafish for future studies on genetic modifications and gene functions using this model organism. Equal contributions to this article.  相似文献   

15.
A targeted gene knockout in Drosophila   总被引:6,自引:0,他引:6  
Rong YS  Golic KG 《Genetics》2001,157(3):1307-1312
We previously described a method for targeted homologous recombination at the yellow gene of Drosophila melanogaster. Because only a single gene was targeted, further work was required to show whether the method could be extended to become generally useful for gene modification in Drosophila. We have now used this method to produce a knockout of the autosomal pugilist gene by homologous recombination between the endogenous locus and a 2.5-kb DNA fragment. This was accomplished solely by tracking the altered genetic linkage of an arbitrary marker gene as the targeting DNA moved from chromosome X or 2 to chromosome 3. The results indicate that this method of homologous recombination is likely to be generally useful for Drosophila gene targeting.  相似文献   

16.
Repairing double strand breaks (DSBs) is absolutely essential for the survival of obligate intracellular parasite Toxoplasma gondii. Thus, DSB repair mechanisms could be excellent targets for chemotherapeutic interventions. Recent genetic and bioinformatics analyses confirm the presence of both homologous recombination (HR) as well as non homologous end joining (NHEJ) proteins in this lower eukaryote. In order to get mechanistic insights into the HR mediated DSB repair pathway in this parasite, we have characterized the key protein involved in homologous recombination, namely TgRad51, at the biochemical and genetic levels. We have purified recombinant TgRad51 protein to 99% homogeneity and have characterized it biochemically. The ATP hydrolysis activity of TgRad51 shows a higher K(M) and much lower k(cat) compared to bacterial RecA or Rad51 from other related protozoan parasites. Taking yeast as a surrogate model system we have shown that TgRad51 is less efficient in gene conversion mechanism. Further, we have found that TgRad51 mediated gene integration is more prone towards random genetic loci rather than targeted locus. We hypothesize that compromised ATPase activity of TgRad51 is responsible for inefficient gene targeting and poor gene conversion efficiency in this protozoan parasite. With increase in homologous flanking regions almost three fold increments in targeted gene integration is observed, which is similar to the trend found with ScRad51. Our findings not only help us in understanding the reason behind inefficient gene targeting in T. gondii but also could be exploited to facilitate high throughput knockout as well as epitope tagging of Toxoplasma genes.  相似文献   

17.
18.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination.Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4.Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).  相似文献   

19.
A variety of experimental approaches have been devised recently to mutate mammalian genes by homologous recombination. In this report, we describe the disruption of the Hox1.3 locus by using two of these approaches, namely, positive-negative selection and activation of a promoterless gene. Interestingly, we observe similarly high frequencies of targeted disruption with both procedures. The high frequency of targeted disruption with a promoterless vector was unexpected given the extremely low level of Hox1.3 expression in the embryonic stem cell line used for these studies. These data indicate that minimal expression of the target gene is required to enrich for homologous recombination events with promoterless vectors and thus enhance the promoterless gene approach as a general strategy to mutate mammalian genes by homologous recombination.  相似文献   

20.
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号