首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
巴斯德毕赤酵母是甲醇酵母,作为应用最广泛的真核表达系统之一,在以甲醇为唯一碳源时可以利用醇氧化酶启动子PAOX1进行外源蛋白的表达,但是这一过程会被甘油阻遏。近几年有研究表明,甘油转运体不仅有运输甘油的功能,还与甘油、甲醇的代谢有一定的联系。目的:构建了甘油转运体GT2(PAS_chr3_1076)缺失菌株P.pastoris X-33ΔGT2,研究该菌株的甘油去阻遏效应和在不同碳源培养基中诱导PAOX1启动子驱动外源蛋白的表达水平。方法:构建以甲醇诱导型启动子PAOX1调控外源基因EGFP的表达载体PAOX1-EGFP,经酶线性化后电转野生型菌株P.pastoris X-33获得重组菌株x-EGFP;通过同源重组的方法敲除GT2基因,获得ΔGT2-EGFP敲除菌株;以ΔGT2-EGFP和X-EGFP为出发菌株,在甘油、甲醇,以及甘油甲醇混合为碳源诱导醇氧化酶AOX1及绿色荧光蛋白EGFP的表达和生长情况,并检测在以甘油为唯一碳源时,胞外的甘油含量。结果:在以甘油甲醇混合碳源培养时,突变体ΔGT2-EGFP菌株中AOX1单位酶活比野生型菌株高出近35%,单位荧光强度要高出近70%;在以甘油为唯一碳源时,X-EGFP最终收获时的生物量比ΔGT2-EGFP多,且发酵液中甘油含量相对较少;以混合碳源培养时ΔGT2总外源蛋白表达水平最高。结论:实验表明,GT2参与甘油的吸收与代谢,ΔGT2突变株可在一定程度上解除甘油对甲醇的代谢抑制,暗示甘油转运体与PAOX1相关,且基于此研究结果有望优化出更高效的酵母表达系统。  相似文献   

2.
旨在揭示芽殖酵母线粒体蛋白SHY1(YGR112W)在粟酒裂殖酵母中同源蛋白Shy1的功能。借助基因敲除方法获得shy1基因缺失菌株获Δshy1,并观察其在以甘油为唯一碳源的非发酵培养基上的生长表型;生物信息学分析显示粟酒裂殖酵母Shy1在N端含有大概30个氨基酸的线粒体定位序列(MTS),为进一步确定Shy1蛋白的定位,借助nmt1启动子调控下的Shy1蛋白C端GFP荧光标记,观察GFP绿色荧光位置。最后利用Western blotting检测shy1的缺失对线粒体蛋白的影响。研究结果表明,shy1基因缺失菌株在以甘油为唯一碳源的非发酵培养基上表现出生长缺陷,是线粒体呼吸缺陷型菌株;当GFP标记于nmt1启动子调控下的Shy1蛋白C端时,绿色荧光观察确定Shy1蛋白定位在线粒体;Western blotting检测结果显示shy1缺失导致线粒体相关蛋白的表达量明显下降;结果表明,粟酒裂殖酵母Shy1定位于线粒体且是线粒体呼吸链正常发挥功能所必须的。  相似文献   

3.
为了测定GAPDH在巴斯德毕赤酵母中作为内参蛋白的有效性,利用PCR鉴定巴斯德毕赤酵母中GAPDH基因,分别在含葡萄糖、甲醇、甘油培养基及不同温度下培养巴斯德毕赤酵母,采用SDS-PAGE、Western blotting和催化活性检测。测序结果与已报道的巴斯德毕赤酵母GAPDH基因完全一致。SDS-PAGE结果显示,表达蛋白分子量为35.4 kD,与预期分子量相符。Western blotting和催化活性测定显示,在葡萄糖诱导下GAPDH表达最高,甲醇次之,甘油最低。37℃下GAPDH表达略高于28℃。在同一诱导物或温度下,GAPDH表达不会随浓度或培养时间发生明显变化。结果表明,在同一种诱导方式下,GAPDH可以作为异源蛋白表达的内参对照。  相似文献   

4.
通过PULL-DOWN找到与巴斯德毕赤酵母转录激活因子Mxr1相互作用的小分子酪氨酸磷酸酶Ptp,并验证其去磷酸化功能,可以使磷酸化的Mxr1第215位丝氨酸的磷酸基团水解。用Mxr1第215位特定位点磷酸化抗体Western blot检测Mxr1S215在不同培养基中磷酸化情况。发现野生菌株中Mxr1在甘油培养基没有磷酸化,在甲醇培养基发生磷酸化。在Ptp高表达菌株中,无论在甘油还是甲醇培养基Mxr1都没有发生磷酸化,而在Ptp敲除菌株中磷酸化明显高于野生型菌株,说明Ptp调控Mxr1磷酸化。在大肠杆菌中表达并纯化,测定了Ptp酶学性质。构建了巴斯德毕赤酵母Mxr1S215A突变株,发现多个与甲醇代谢相关的基因在转录水平发生变化,推测其可能受S215位点磷酸化Mxr1的调控。  相似文献   

5.
本研究利用巴斯德毕赤酵母Pichia pastoris蛋白表达体系表达了药用担子菌桦褐孔菌的一个二肽酶基因。该二肽酶基因编码区全长1814bp,包含6个内含子,编码465个氨基酸。生物信息学分析发现,二肽酶基因编码的蛋白中不含信号肽序列,但在第55–77位氨基酸之间存在一个跨膜结构。将含跨膜结构和去跨膜结构蛋白的cDNA序列分别克隆到酵母分泌型表达载体pPICZαA上,电转化至巴斯德毕赤酵母X-33中,用1%(V/V)甲醇诱导重组菌株表达目标蛋白,采用SDS-PAGE和Western-blot检测表达蛋白。结果显示,巴斯德毕赤酵母可表达含跨膜结构的完整基因,但目标蛋白不能分泌到胞外,存在于破碎细胞的沉淀中,且没有催化活性;而去跨膜结构的蛋白则可分泌表达到胞外,并具有催化活性。Ni-NTA纯化去跨膜结构的桦褐孔菌二肽酶浓度可达0.12mg/mL,并发现其在pH 7.3、反应温度50℃、反应时间2h的条件下,以Gly-Gly为底物时,其比活为433U/mg。同时检测到其对Ile-Leu、Trp-Trp和Phe-Phe具有较高的水解活性。  相似文献   

6.
目的:分离克隆并鉴定巴斯德毕赤酵母表达系统中甘油阻遏相关基因。方法:PCR扩增LacZ基因,克隆至pPLC9载体,构建pPIC9-LacZ表达载体,经Sal I线性化后转化巴斯德毕赤酵母GS115,构建GS115-LacZ模式菌株;用限制酶介导整合(REMI)技术使GS115-LacZ菌体基因组产生随机突变,筛选甘油去阻遏的GS115-LacZ△菌体;Southern blot鉴定GS115-LacZ△基因组,用质粒拯救技术和TAIL-PCR克隆未知基因序列并测序。结果:得到甘油去阻遏的GS115-LacZ△菌体,经Southern blot分析,突变仅发生在1个基因中;通过质粒拯救和TAIL-PCR,分离得到阻遏相关基因GR1,共2863bp,经在线BLAST,发现其编码一种过氧化物酶体自吞噬相关蛋白。结论:分离得到阻遏相关基因GR1,与过氧化物酶体自吞噬相关,提示过氧化物酶体自吞噬相关基因可能对醇氧化酶启动子AOX1的转录活性有影响。  相似文献   

7.
孔艺萌  孔庆忠 《微生物学通报》2009,36(12):1935-1937
通过逐步减少巴斯德毕赤酵母基本培养基中生长因子和微量元素的组成种类, 最终确认维持巴斯德毕赤酵母在平板上的生长, 除生物素外其它生长因子和微量元素不必额外添加。据此提出了一种简化的巴斯德毕赤酵母基本培养基SPMD, 其成分为6种无机盐、生物素和葡萄糖。除葡萄糖单独灭菌外, 配制时可以高温高压灭菌。使用该培养基用于转化子的筛选实验中, 获得了与使用常规MD培养基基本相当的转化效率。  相似文献   

8.
表达乙肝病毒包膜中蛋白的嗜甲醇毕赤酵母菌株的构建   总被引:1,自引:1,他引:0  
巴斯德毕赤酵母是一种很有潜力的真核表达体系。本文报告将已克隆的乙型肝炎病毒preS2-S基因亚克隆于巴斯德毕赤酵母胞内表达质粒pPIC3,构建重组pPIC3/preS2-S质粒,经酶切线性化后,将其用电转化导入酵母细胞内,经PCR及dotblot检测,挑选出在染色体上稳定整合了乙肝病毒包膜中蛋白编码基因的嗜甲醇毕赤酵母菌株,为高效表达乙肝病毒包膜中蛋白奠定了基础  相似文献   

9.
草鱼生长激素基因在毕赤酵母中的表达   总被引:2,自引:0,他引:2  
将草鱼生长激素基因(cGH)的cDNA亚克隆到酵母表达载体pPIC9K中,经电击转化导入毕赤巴斯德酵母GS115菌株,获得转化子。菌落PCR技术筛选证实cGH已经整合到了酵母染色体上。对重组酵母进行诱导表达,SDS-PAGE和Western印迹分析,结果表明cGH的毕赤巴斯德酵母GS115菌株中获得了高效表达。  相似文献   

10.
转化了乙肝病毒 preS2 S基因的重组巴斯德毕赤酵母菌株经甘油培养基充分增殖 ,然后转移到甲醇培养基中进行诱导表达。破碎细胞并提取胞内蛋白 ,经ELISA和WesternBlot检测 ,证明有 4株GS1 1 5 /HIS MUT 表达了HBVM蛋白。  相似文献   

11.
甘油脱水酶是甘油转化3-羟基丙酸生物合成途径中的关键性限速酶,然而底物甘油的存在会抑制该酶的活性,从而引起3-羟基丙酸合成量的下降.因此解除底物甘油对甘油脱水酶活性的抑制作用,是提高生物合成3-羟基丙酸产量的方法之一.克隆来源于克雷伯氏菌(Klebsiella pneumoniae)的甘油脱水酶编码基因dhaB、甘油脱...  相似文献   

12.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by glycerol. In contrast to glucose consumption, which starts only after more easily degradable substrates present in yeast extract have been depleted, glycerol is consumed during the earliest growth phases. When U-(14)C-labeled glycerol was added to the culture, up to 25% of the radioactivity was incorporated by the cells. Glycerol kinase activity was detected only in cells grown in the presence of glycerol (up to 90 nmol mg protein(-1) min(-1)). This enzyme functioned over salt concentrations from 0.6 to 2.8 M KCl. No significant activity of NAD-dependent glycerol dehydrogenase was found. It is suggested that Salinibacter may use glycerol as one of its principal substrates in its habitat, the saltern crystallizer ponds.  相似文献   

13.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

14.
We examined the effects of heterologous expression of the open reading frames (ORF) of two genes on salt tolerance and glycerol production in a Saccharomyces cerevisiae strain deficient in glycerol synthesis (gpd1Deltagpd2Delta). When the ORF of the Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) was expressed under the control of the GAL10 promoter, salt tolerance and glycerol production increased; when the ORF of the glycerol dehydrogenase gene (ZrGCY1) was expressed under the control of the GAL1 promoter, no such changes were observed. Zrgcy1p had a weak effect on glycerol production. These results suggest that Zrgpd1p is the primary enzyme involved in Z. rouxii glycerol production, following a mechanism similar to that of S. cerevisiae (Gpd1p). When the ORFs of the S. cerevisiae glycerol 3-phosphatase gene (GPP2) and ZrGPD1 were simultaneously expressed, glycerol production increased, compared with that in yeast expressing only ZrGPD1.  相似文献   

15.
Glycerol carbonate is a key multifunctional compound employed as solvent, additive, monomer, and chemical intermediate. Enzymatic synthesis of glycerol carbonate from renewable starting materials (glycerol and dimethyl carbonate) was successfully achieved by immobilized lipase from Candida antarctica (CALB, Novozym 435). Addition of molecular sieves as scavenger for the removal of methanol, which was generated from dimethyl carbonate during the reaction, accelerated a reaction rate. After the optimization, the equimolar use of glycerol and dimethyl carbonate in the Novozym 435-catalyzed reaction yielded a glycerol carbonate with almost quantitative yield. The resulting glycerol carbonate from 60 °C reaction has shown the low enantiomeric excess (13% ee) as configuration of (R)-enantiomer.  相似文献   

16.
From the collected extract from King Sejong Antarctic Station, strain Micractinium sp. KSF0031, led to the isolation of one new monoacyldigalactosyl glycerol (1) and seven known compounds (28). Their chemical structures were established using extensive spectroscopic techniques, including 1D, 2D-NMR, and MS, and compared with the published data. To the best of our knowledge, this is the first report to investigate the secondary metabolites from genus Micractinium. The monoacyldigalactosyl glycerol in Micractinium could serve as its chemotaxonomic markers.  相似文献   

17.
18.
Glycerol and glycerol 3-phosphate uptake in Bacillus subtilis does not involve the phosphotransferase system. In spite of this, B. subtilis mutants defective in the general components of the phosphotransferase system, EnzymeI or Hpr, are unable to grow with glycerol as sole carbon and energy source. Here we show that a Hpr mutant can grow on glycerol 3-phosphate and that glycerol 3-phosphate, but not glycerol, can induce glpD encoding glycerol-3-phosphate dehydrogenase. Induction of glpD also requires the glpP gene product which is a regulator of all known glp genes. Thus the phosphotransferase system general components do not interfere with the overall regulation of the glp regulon. Revertants of a Hpr mutant which can grown on glycerol carry mutations closely linked to the glp region at 75 degrees on the B. subtilis chromosomal map. This region contains the glpP, the glpFK and the glpD operons. The glpFK operon encodes the glycerol uptake facilitator (glpF) and glycerol kinase (glpK). The present results demonstrate that one of these genes, or their gene products, is the target for phosphotransferase system control of glycerol utilisation. Furthermore we conclude that utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in B. subtilis.  相似文献   

19.
Cloning of the glycerol kinase gene of Bacillus subtilis   总被引:1,自引:0,他引:1  
A 3.5 kb fragment of Bacillus subtilis DNA which contains wild type alleles of mutations in glpK (glycerol kinase) and glpD (glycerol-3-phosphate [G3P] dehydrogenase) was cloned in plasmid pHV32 in Escherichia coli. The cloned fragment expresses glycerol kinase in B. subtilis mutants carrying the mutations glpK11 and recE4 after induction with glycerol or G3P whereas it does not express G3P dehydrogenase. The cloned fragment thus contains the complete glpK but probably only part of glpD.  相似文献   

20.
为探索在野生型粉状毕赤酵母(Pichia farinosa)中整合表达来源于耐高渗鲁氏酵母(Zygosacharomyces rouxii)的3-磷酸甘油脱氢酶基因(ZrGPD1)以提高产甘油能力的可行性,应用PCR方法从P. farinosa的染色体中扩增出乳清苷酸脱羧酶基因(URA3)片段,以此作为同源整合的靶序列,构建了整合型表达载体pUR-ZG。电击转化粉状毕赤酵母,以抗生素Zeocin为筛选标记,获得转化子pfa-gu,摇瓶发酵结果表明:以P. farinosa作为对照菌株,发酵72h后,转化子pfa-gu的生物量和甘油含量均高于对照菌株,其中甘油含量达到37g/L,比对照提高了30%。结论:在P. farinosa中异源表达ZrGPD1能够提高细胞的产甘油能力和对渗透压的调节能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号