首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  完全免费   5篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有60条查询结果,搜索用时 156 毫秒
1.
A DNA fragment encoding two enzymes leading to trehalose biosynthesis, maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH), was cloned from the nonpathogenic bacterium Brevibacterium helvolum. The open reading frames for the two proteins are 2,331 and 1,770 bp long, respectively, and overlap by four nucleotides. Recombinant BvMTS, BvMTH, and fusion gene BvMTSH, constructed by insertion of an adenylate in the overlapping region, were expressed in Escherichia coli. Purified BvMTS protein catalyzed conversion of maltopentaose to maltotriosyltrehalose, which was further hydrolyzed by BvMTH protein to produce trehalose and maltotriose. The enzymes shortened maltooligosaccharides by two glucose units per cycle of sequential reactions and released trehalose. Maltotriose and maltose were not catalyzed further and thus remained in the reaction mixtures depending on whether the substrates had an odd or even number of glucose units. The bifunctional in-frame fusion enzyme, BvMTSH, catalyzed the sequential reactions more efficiently than an equimolar mixture of the two individual enzymes did, presumably due to a proximity effect on the catalytic sites of the enzymes. The recombinant enzymes produced trehalose from soluble starch, an abundant natural source for trehalose production. Addition of α-amylase to the enzyme reaction mixture dramatically increased trehalose production by partial hydrolysis of the starch to provide more reducing ends accessible to the BvMTS catalytic sites.  相似文献
2.
Genes up-regulated during red coloration in UV-B irradiated lettuce leaves   总被引:3,自引:0,他引:3  
Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3′,5′-hydroxylase (F3′,5′H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.  相似文献
3.
Colonization of the roots of tobacco by Pseudomonas chlororaphis O6 induces systemic resistance to the soft-rot pathogen, Erwinia carotovora ssp. carotovara SCC1. A screen of the transposon mutants of P. chlororaphis O6 showed mutants with about a fivefold reduction in ability to induce systemic resistance to the soft-rot disease. These mutations disrupted genes involved in diverse functions: a methyl-accepting chemotaxis protein, biosynthesis of purines, phospholipase C, transport of branched-chain amino acids and an ABC transporter. Additional mutations were detected in the intergenic spacer regions between genes encoding a GGDEF protein and fumarate dehydratase, and in genes of unknown function. The mutants in the ABC transporters did not display reduced root colonization. However, the other mutants had up to 100-fold reduced colonization levels. Generally the production of metabolites important for interactions in the rhizosphere, phenazines and siderophores, was not altered by the mutations. A reduced induction of systemic resistance by a purine biosynthesis mutant with a disrupted purM gene correlated with poor growth rate, lesser production of phenazines and siderophore and low levels of root colonization. These studies showed that multiple determinants are involved in the induction of systemic resistance, with there being a requirement for strong root colonization.  相似文献
4.
Shin YS  Lee EG  Shin GW  Kim YR  Lee EY  Kim JH  Jang H  Gershwin LJ  Kim DY  Kim YH  Kim GS  Suh MD  Jung TS 《Proteomics》2004,4(11):3600-3609
Antigenic proteins of Neospora caninum (N. caninum) against bovine immunoglobulins M, E, A, and G were investigated by using immunoproteomics. Proteins of N. caninum (KBA-2) tachyzoite lysates separated by two-dimensional gel electrophoresis were transferred to polyvinylidene difluoride (PVDF) membranes, probed with different bovine immunoglobulin class and classified. Antigenic spots recognized were also identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis. 132, 84, 4, and 40 antigenic protein spots were recognized on N. caninum immunoblot profiles against bovine IgM, IgE, IgA, and IgG, respectively. Of these protein spots, the antigenic proteins recognized by either IgM, IgE, and IgG, or IgM and IgG were HSP70, pyruvate kinase, actin, NCDG-1, tubulin alpha-chain, and putative ribosomal protein S2. On the other hand, IgM, IgE, and IgA reacted with NTPase, HSP60, tubulin beta-chain, putative protein disulfide isomerase, enolase, lactate dehydrogenase, serine-threonine phosphatase, 14-3-3 protein homologue, and GRA2 protein. Most of the antigenic proteins identified were associated with the process of invasion, proliferation, and egression of apicomplexans. In our study, HSP70, actin, NTPase, HSP60, pyruvate kinase, enolase, putative ribosomal protein S2, NCDG-1, and GRA2 proteins were found to be immunodominant proteins, which may contribute to the development of diagnostic markers and vaccine.  相似文献
5.
Desiccation tolerance of celery (Apium graveolens L.) somatic embryos was increased by supplementation of embryo-production medium with 1 M abscisic acid (ABA) or 1 mM proline, with highest survival obtained with a combination of 1 M ABA and 1 mM proline. Addition of ABA and proline increased fatty acid accumulation by somatic embryos; the effect on fatty acid composition was inconsistent. Somatic embryos capable of germination differed from mature zygotic embryos by greater size, lower fatty acid level, and substantially lower proportion of oleic acid (18:1) as compared to linoleic acid (18:2).  相似文献
6.
Calcineurin B-like protein-interacting protein kinases (CIPKs) are a group of typical Ser/Thr protein kinases that mediate calcium signals. Extensive studies using Arabidopsis plants have demonstrated that many calcium signatures that activate CIPKs originate from abiotic stresses. However, there are few reports on the functional demonstration of CIPKs in other plants, especially in grasses. In this study, we used a loss-of-function mutation to characterize the function of the rice CIPK gene OsCIPK31. Exposure to high concentrations of NaCl or mannitol effected a rapid and transient enhancement of OsCIPK31 expression. These findings were observed only in the light. However, longer exposure to most stresses resulted in downregulation of OsCIPK31 expression in both the presence and absence of light. To determine the physiological roles of OsCIPK31 in rice plants, the sensitivity of oscipk31::Ds, which is a transposon Ds insertion mutant, to abiotic stresses was examined during germination and seedling stages. oscipk31::Ds mutants exhibited hypersensitive phenotypes to ABA, salt, mannitol, and glucose. Compared with wild-type rice plants, mutants exhibited retarded germination and slow seedling growth. In addition, oscipk31::Ds seedlings exhibited enhanced expression of several stress-responsive genes after exposure to these abiotic stresses. However, the expression of ABA metabolic genes and the endogenous levels of ABA were not altered significantly in the oscipk31::Ds mutant. This study demonstrated that rice plants use OsCIPK31 to modulate responses to abiotic stresses during the seed germination and seedling stages and to modulate the expression of stress-responsive genes.  相似文献
7.
Antimycin A (AMA) inhibits succinate oxidase and NADH oxidase, and also inhibits mitochondrial electron transport between cytochromes b and c. We investigated the involvement of ROS and GSH in AMA-induced HeLa cell death. AMA increased the intracellular H(2)O(2) and O(2)(*-) levels and reduced the intracellular GSH content. ROS scavengers (Tempol, Tiron, Trimetazidine and NAC) did not down-regulate the production of ROS and inhibit apoptosis in AMA-treated cells. Treatment with NAC and N-propylgallate showing the enhancement of GSH depletion in AMA-treated cells significantly intensified the levels of apoptosis. Calpain inhibitors I and II (calpain inhibitor III) and Ca(2+)-chelating agent (EGTA/AM) significantly reduced H(2)O(2) levels in AMA-treated HeLa cells. However, treatment with calpain inhibitor III intensified the levels of O(2)(*-) in AMA-treated cells. In addition, calpain inhibitor III strongly depleted GSH content with an enhancement of apoptosis in AMA-treated cells. Conclusively, the changes of ROS by AMA were not tightly correlated with apoptosis in HeLa cells. However, intracellular GSH levels are tightly related to AMA-induced cell death.  相似文献
8.
Han YH  Kim SH  Kim SZ  Park WH 《Life sciences》2008,83(9-10):346-355
Antimycin A (AMA), an electron transport chain inhibitor in mitochondria can produce reactive oxygen species (ROS) in cells. It has been reported that ROS may have roles in cell cycle progression via regulating cell cycle-related proteins. In the present study, we investigated the changes of the cell cycle distribution in AMA-treated HeLa cells in relation to cell cycle-related proteins. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S phase arrest of the cell cycle at 72 h. AMA decreased the expression of cyclin-dependent kinase inhibitor (CDKI), p21 and p27, CDK4, and cdc2 proteins. The expression of CDK6, cyclin D1, cyclin E, cyclin A, and cyclin B proteins was increased by 0.5 muM AMA, but was decreased by 2 and 10 muM AMA. The phosphorylation of Rb on the Ser (780) residue was increased by 0.5 muM AMA. Furthermore, treatment with AMA caused the accumulation of cells expressing cyclin A, B, and D1 proteins at the S phase of the cell cycle. However, treatment with 100 muM AMA nonspecifically extended all phases of the cell cycle. In conclusion, treatment with AMA (2, 10 and 50 muM) induced an S phase arrest of the cell cycle. An S phase arrest was accompanied by the alteration of other cell cycle-regulated proteins as well as S phase-related proteins.  相似文献
9.
Glycerol carbonate is a key multifunctional compound employed as solvent, additive, monomer, and chemical intermediate. Enzymatic synthesis of glycerol carbonate from renewable starting materials (glycerol and dimethyl carbonate) was successfully achieved by immobilized lipase from Candida antarctica (CALB, Novozym 435). Addition of molecular sieves as scavenger for the removal of methanol, which was generated from dimethyl carbonate during the reaction, accelerated a reaction rate. After the optimization, the equimolar use of glycerol and dimethyl carbonate in the Novozym 435-catalyzed reaction yielded a glycerol carbonate with almost quantitative yield. The resulting glycerol carbonate from 60 °C reaction has shown the low enantiomeric excess (13% ee) as configuration of (R)-enantiomer.  相似文献
10.
A fungal peroxidase from Coprinus cinereus (CiP) was successfully used for oxidative polymerization of cardanol in water–organic solvent mixtures. Cardanol is a phenol derivative from a renewable resource having the meta-substituent of a C15 unsaturated hydrocarbon chain mainly with one to three double bonds. So far, only uneconomic plant peroxidases, such as soybean peroxidase (SBP), have been used to polymerize cardanol. The fungal peroxidase used was easily produced by cultivating C. cinereus, and was purified by ultrafiltration and size exclusion chromatography. The purified peroxidase had a specific activity of 4960 U/mg. The CiP-catalyzed polymerization of cardanol was carried out in aqueous/organic solvents. Microbial CiP catalyzed the cardanol polymerization as efficiently as SBP. The structure and molecular weight of the polycardanol produced by CiP were comparable to those produced by SBP. A low reaction temperature of 10 and 15 °C produced polycardanol in high yield and the hydrogen peroxide feed rate was found to affect the initial reaction rate and the final conversion. From a practical point of view, it is believed that microbial CiP will be found more useful for the synthesis of a range of polyphenols from renewable resources than plant peroxidases.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号