首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛇毒蛋白原核表达包涵体复性研究进展   总被引:2,自引:0,他引:2  
外源基因在大肠杆菌中表达后常形成不溶性的无活性包涵体。包涵体的形成已经成为研究和应用活性蛋白质生产的主要障碍。然而,在合适的条件下,包涵体经过溶解、纯化、复性过程后可在体外重新折叠成有活性的蛋白质。迄今,已对蝰科、眼镜蛇科11种毒蛇的18个基因(包括金属蛋白酶、PLA2、β-银环蛇毒素、心脏素素、丝氨酸蛋白酶、神经生长因子、C-型凝集素等)成功进行了原核表达,采用稀释复性、透析复性和层析复性三种方法成功进行了包涵体复性。着重就蛇毒蛋白原核表达后包涵体复性所用的方法予以综述。  相似文献   

2.
包涵体蛋白体外复性的研究进展   总被引:39,自引:1,他引:38  
方敏  黄华樑   《生物工程学报》2001,17(6):608-612
外源基因在大肠杆菌中高水平表达时 ,通常会形成无活性的蛋白聚集体即包涵体。包涵体富含表达的重组蛋白 ,经分离、变性溶解后须再经过一个合适的复性过程实现变性蛋白的重折叠 ,才能够得到生物活性蛋白。近年来 ,发展了许多特异的策略和方法来从包涵体中复性重组蛋白。最近的进展包括固定化复性以及用一些低分子量的添加剂等来减少复性过程中蛋白质的聚集 ,提高活性蛋白的产率。  相似文献   

3.
重组蛋白包涵体的复性研究   总被引:21,自引:0,他引:21  
重组蛋白在大肠杆菌中的高表达往往形成不可溶、无生物活性的包涵体,需经过变性溶解后,在适当条件下复性形成天然的构象,才可恢复其生物活性.变复性实验是建立在对蛋白质体外折叠机制的了解的基础上.根据近年来对蛋白质折叠机制的认识和重组蛋白包涵体在复性方面的主要进展,论述以下3个方面的内容:1)蛋白质在细胞内的折叠机制;2)蛋白质体外折叠机制;3)蛋白质复性的策略和方法.  相似文献   

4.
二硫键形成蛋白A(Disulfide bond formation protein A,DsbA)是存在于大肠杆菌周质胞腔内的一种参与新生蛋白质折叠过程中催化二硫键形成的折叠酶。综述了DsbA三维结构、进化过程、协助蛋白质体内外复性方面的研究进展。DsbA比硫氧还原蛋白具有更强的氧化性,其强氧化性来自于Cys30残基异常低的pKa值和不稳定的氧化型结构,通过定点突变的研究表明了Cys30残基是DsbA活性中心最关键的氨基酸残基之一。DsbA不论在体内与目标蛋白融合表达还是在体外以折叠酶形式添加,都能有效地催化蛋白质的折叠复性,同时DsbA还具有部分分子伴侣的活性。  相似文献   

5.
包涵体蛋白复性的几种方法   总被引:6,自引:0,他引:6  
外源基因在大肠杆菌中高水平表达时,通常会形成无活性的蛋白聚集体即包涵体。包涵体富含表达的重组蛋白,经分离、变性溶解后须再经过一个合适的复性过程实现变性蛋白的重折叠,才能够得到生物活性蛋白。  相似文献   

6.
李烈军  王捷 《生物技术》2005,15(3):85-87
外源基因在大肠杆菌中高水平表达时,通常会形成不溶性、无活性的蛋白聚集体即包含体。包含体富含表达的重组蛋白,经分离、变性溶解后须再经过一个合适的复性过程实现变性蛋白的重折叠,才能够得到生物活性蛋白。近年来,发展了许多特异的策略和方法来从包含体中复性重组蛋白。介绍稀释法、透析及分子排阻、固定化金属离子亲和层析、疏水层析复性等策略和进展;物理化学因素、前导肽协助蛋白折叠;人工分子伴侣辅助蛋白折叠及反胶束、多聚物用于蛋白复性。  相似文献   

7.
包涵体复性研究进展(英文)   总被引:10,自引:2,他引:8  
用基因工程技术在大肠杆菌高水平表达重组蛋白时,通常形成无生物活性的包涵体。包涵体在体外经分离、溶解与重折叠后可实现复性,表现为具有生物活性的蛋白。总结了包涵体的相关复性技术,重点介绍重折叠的最新进展情况 。  相似文献   

8.
猪α1-干扰素的基因改造与高效原核表达   总被引:15,自引:0,他引:15  
poIFNα1基因中含有大量的大肠杆菌稀有密码子,为了获得高表达,使用了大肠杆菌的偏爱密码子,人工合成了poIFN|α1成熟蛋白编码基因。在保留编码蛋白序列的同时,使其5′端A+T的含量增加到最大限度,并将其终止密码子改为TAA。将合成的poIFNα1成熟蛋白编码基因插入原核单纯表达载体pRLC中,转化大肠杆菌DH5α。实现了poIFNα1在大肠杆菌中的高效表达,表达产物以包涵体形式存在。纯化的包涵体经含DTT的6 mol/L盐酸胍的变性液溶解及含GSHGSSG的复性液复性处理,复性后的表达产物浓缩后经凝胶层析纯化,细胞病变抑制法测定表明,重组poIFNα1具有较高的抗病毒活性,约为6.4x106u/mg。   相似文献   

9.
分子伴侣(molecular chaperone)能够帮助新生多肽链或错误折叠的蛋白质形成天然构象,但本身又不是成熟蛋白质的组成成分。蛋白质需要分子伴侣的帮助,才能够从核糖体合成的新生肽链折叠成有生物活性的大分子。E.coli的ObgE蛋白是保守的GTP酶,ObgE蛋白参与信号转导、蛋白运输和细胞周期调控,并与E.coli在氨基酸饥饿下的应激反应有关。本实验通过分子克隆,将E.coli ObgE蛋白的基因克隆到表达载体pET-28a中,转化到E.coli BL21进行蛋白表达纯化。纯化后的ObgE蛋白通过柠檬酸合成酶变复性实验、α-葡萄糖苷酶变复性实验、牛碳酸酐酶变复性实验,检测ObgE蛋白的分子伴侣活性,发现ObgE具有一定的分子伴侣活性,为该蛋白的研究应用奠定了基础。  相似文献   

10.
HSP70分子伴侣系统研究进展   总被引:15,自引:0,他引:15  
综述了HSP70分子伴侣系统的晶体结构、功能及作用机理方面的研究进展.HSP70分子伴侣能够帮助细胞内新生蛋白的折叠和跨膜运输、蛋白质多聚体结构的装配和解装配,并能在胁迫下维持蛋白质的特殊构象,防止未折叠的蛋白质变性和使聚集的蛋白质溶解复性.所有这些活性均依赖于ATP调节的HSP70与底物蛋白中的疏水片段的相互作用.  相似文献   

11.
蛋白质的折叠问题一直是生物学研究的前沿之一,蛋白质稳态平衡的破坏与衰老及很多神经退行性疾病的发病机理密切相关,而蛋白质的正确折叠与蛋白质稳态在很大程度上取决于分子伴侣参与构建的复杂网络。许多研究表明,抗体可以作为分子伴侣促进蛋白质的正确折叠,并阻止蛋白质的异常聚集,抗体所具有的严格底物特异性使其具备了治疗特定蛋白质折叠病、帮助包涵体复性等应用潜力。本文简要介绍了分子伴侣的研究进展,详细阐述了具有分子伴侣功能的抗体及单链抗体的研究进展,最后重点讨论了可抑制蛋白质聚集的抗体的研究近况。  相似文献   

12.
二硫键异构酶   总被引:2,自引:1,他引:1  
天然二硫键的形成是许多蛋白正确折叠中的限速步骤,在稳定蛋白质构象和保持蛋白质活性方面起重要作用。讨论的二硫键异构酶是内质网中一种重要的蛋白折叠催化剂,它催化蛋白二硫键的形成和错误配对二硫键的重排,并有抑制错误折叠蛋白聚集的分子伴侣活性。PDI广泛应用于基因工程上提高外源蛋白表达水平。  相似文献   

13.
枯草杆菌中性蛋白酶基因在大肠杆菌中的表达   总被引:7,自引:0,他引:7  
蛋白酶是枯草杆菌(Bacillus subtilis)产生的具有重要工业价值的水解酶。对蛋白酶基因的分离与高效率表达一直是基因工程研究领域的重要内容之一[1-4]。蛋白酶基因的筛选可采用不同的方法,如“免疫法”、“DNA 杂交法”、“遗传互补法”等。大肠杆菌(Escherichia coli)是基因工程中最常用的宿主菌, 若能以E.Coli作为筛选蛋白酶基因的宿主苗,那么使用E.Coli的常规载体,便可直接获得完整的蛋白 酶基因。枯草杆菌的蛋白酶基因能否在大肠杆菌中表达.则是实现这一目标的关键。Koide等人[5]报道过枯草杆菌的胞内丝氨酸蛋白酶基因在大肠杆菌中的表达。转化细胞在含有脱脂牛奶的平板上可产生十分微弱的水解圈。Ikeraara等人[6]将Subtilisin E(枯草杆菌蛋白酶E)插人大肠杆菌的表达载体,具有活性的Subtilisin E便可分泌到大肠杆菌的细胞周质中。吴汝平撰文指出[7]。克隆的枯草杆菌蛋白酶基因不能在大肠杆菌中表达。是因为大肠杆菌不能转录枯草杆菌的促使生长调节基因。Wang等人[8]则认为,在大肠杆菌中观察不到野生型的中性蛋白酶基因E(nprE)的表达。是因为nprE的表达产物对大肠杆菌有致死作用.除去该基因上的核糖体结合位点,nprE便能在大肠杆菌中低水平表达,并能将表达产 物分泌至胞外。由上可知.枯草杆菌的蛋白酶基因能否在大肠杆菌中表达以及表达的位置仍然是一个众说纷纭的问题,这一问题也正是能否用大肠杆菌作为宿主菌筛选蛋白酶基因的关键。  相似文献   

14.
骨形成蛋白(Bone Morphogenetic Protein,BMP)是一类能诱导异位骨及软骨形成,并在动物的发育和分化中起作用的蛋白质[1,2,3]。自Urist及其同事发现骨形成蛋白以来4。已对8种人的BMP进行了克隆,除BMP-1外[5],BMP-2至BMP-8均与TGF-β家族相关,它们能诱导细胞分化,促进骨、软骨及牙本质的形成[1,6]。并在发育、分化和形成过程中起重要作用。最新的研究认为BMP-1是一种胶原蛋白酶[7],进一步揭示了BMP家族成员的生物学作用。人的BMP-3基因定位于第4染色体上,BMP-3蛋白由472个氨基酸组成,包括N端的信号肽、中间的前肽及C端的成熟肽三部分。BMP-3的C末端与MBP-2A及BMP-2B有49%的序列相同[5]。本实验室曾检测了BMP-3和BMP-5在不同 组织和细胞中的表达情况,发现它们在一些与骨形成无关的组织和细胞中均有表达,说明了BMP在动物和人中有着其他重要的作用[8]。在此基础上,我们对BMP-3进行了克隆及在大肠杆菌中高效表达BMP-3-GST融合蛋白,并用Western印迹证明了其活性。  相似文献   

15.
目的:来源于芽孢杆菌的β-折叠桶植酸酶基因PhyH,截去N端120个碱基编码的40个氨基酸后,成功构建了原核表达体系,通过两种方法分别得到有活性的目的蛋白PhyHT,并通过进一步纯化提高目的蛋白的纯度.方法:通过分子伴侣共表达系统提高目的蛋白的可溶性表达,并通过包涵体复性研究,从包涵体中制备出有活性的目的蛋白.结果:(1)目的蛋白PhyHT主要以包涵体形式存在于沉淀中;(2)通过优化表达条件,降低温度和诱导剂浓度均不能明显改善包涵体问题,通过构建分子伴侣共表达系统(即pG-KJE8、pGro7、pKJE7和pTfl6 4种分子伴侣质粒分别与重组表达质粒pET28b-PhyHT共表达),筛选能提高目的蛋白可溶性表达的分子伴侣质粒;(3)包涵体经过复性和进一步的纯化,得到了高纯度的有生物活性的目的蛋白.  相似文献   

16.
用基因工程技术在原核细胞中高效表达的外源基因常常形成不溶性的包含体,目前常用的方法对包含体蛋白的复性效率很低,极大地降低了目的蛋白的生物活性,限制了生物技术的开发应用,成为当今分子生物学快速发展的一大障碍。目前研究的大多数热休克蛋白都具有分子伴侣的作用,参与细胞内新生蛋白分子的正确折叠,其本身并不成为成熟蛋白分子的一部分。PKhsp是在日本Kagoshima Kodakara一温泉中分离到的一株耐热古细菌KOD1中发现的热休克蛋白,经初步证实该蛋白具有分子  相似文献   

17.
以人工设计的,不含半胱氨氨酸残基的三元蛋白,六聚和八聚鲑鱼降钙素融合蛋白和人尿激酶原等不同半胱氨酸残基含量的外源蛋白质为例,利用大肠杆菌硫氧还蛋白还原酶基因缺陷菌GH980(DE3 trxB^-),探索把以包涵体形式表达的外源蛋白质变为可溶性表达的可能性及其规律。研究表明:由于硫氧还蛋白还原酶基因的缺陷所引超的细胞质氧化还原态势的变化,使一些在普通大肠杆菌宿主中以包涵 形式表达,含有半胱氨酸残基的重组蛋白,在GJ980中能在一定程度上以可溶性蛋白质形式表达;不含有半胱氨酸残基的重组蛋白在GJ980中仍以包涵体形式表达,推测重组蛋白在GJ980细胞质中形成二硫键对其正确构象的形成具有一定的作用。  相似文献   

18.
通过大肠杆菌表达系统来生产重组人载脂蛋白AIM(proapolipoprote in AIM,proapoAIM)。整个proapo AIM基因被分成两个片断,通过RT-PCR的方法合成。在对该基因的上游部分进行改造后,插入到表达载体pBV220中进行表达。蛋白的表达量达到45%左右,蛋白的表达形式为包涵体。包涵体通过疏水柱进行柱上复性,复性后的蛋白具有良好的生物活性。  相似文献   

19.
胶源神经营养因子(Glialcellinederivedneurotrophicfactor,GDNF)是大鼠B49细胞系中分离纯化得到的一种蛋白质[1],由于其对多巴胺神经元的专一性的神经营养作用而被发现。GDNF成熟蛋白由134个氨基酸组成,具有两个N-糖基化位点。它属于TGF-β基因家族但与该家族其它成员的氨基酸序列同源性仅为20%,可能是一个新的亚家族。最近研究表明,它对发育中的运动神经元也有很强的神经营养作用[1]。对啮齿类[3,4],灵长类的弥猴[5]的活体试验表明,胶源神经营养因子是一种治疗神经退化发夹知病如帕金森氏症、肌萎缩性脊髓索硬化症等的非常有效的潜在药物。由于GDNF在体内含量极低而且公在发育早期表达,因而只有通过基因工程方法才能获得大量的GDNF。本文报道采用PCR方法从中国入基因组DNA 中扩增出编码GDNF的基因,并实现在大肠杆菌中的高效表达。这为进一步研究GDNF的结构和生物学功能打下了坚实的基础。  相似文献   

20.
将江浙蝮蛇(Agkistrodon halys Pallas,A.h.P)神经生长因子(Nerve growth factor,NGF)基因克隆于分泌型原核表选载体pET-22b+,以c端融合了6个组氨酸的形式在大肠杆菌B12l(DE3)中进行了IPTG诱导表达。SDSPAGE分析确定有一比理论值略大的诱导表达条带,其表达量占全菌蛋白质的20%左右,且表达蛋白质主要是以包涵体的形式存在。用6mol/L的盐酸胍溶解包涵体后,利用固定化金属离子(Ni2+)配体亲和层析一步纯化目的蛋白质,纯度可达80%左右。对该重组肽进行变复性研究。利用PCl2细胞进行生物活力测定,证明表达产物具有NGF生物活力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号