共查询到19条相似文献,搜索用时 46 毫秒
1.
二硫键形成蛋白A(DisulfidebondformationproteinA,DsbA)是存在于大肠杆菌周质胞腔内的一种参与新生蛋白质折叠过程中催化二硫键形成的折叠酶。综述了DsbA三维结构、进化过程、协助蛋白质体内外复性方面的研究进展。DsbA比硫氧还原蛋白具有更强的氧化性,其强氧化性来自于Cys30残基异常低的pKa值和不稳定的氧化型结构,通过定点突变的研究表明了Cys30残基是DsbA活性中心最关键的氨基酸残基之一。DsbA不论在体内与目标蛋白融合表达还是在体外以折叠酶形式添加,都能有效地催化蛋白质的折叠复性,同时DsbA还具有部分分子伴侣的活性。 相似文献
2.
【目的】 实验室前期研究发现单核细胞增生李斯特菌(单增李斯特菌,Listeria monocytogenes)二硫键形成蛋白DsbA缺失后,细菌胞间迁移能力增强,本研究旨在深入解析DsbA介导该生物学过程的具体机制。【方法】 通过荧光定量PCR和蛋白质免疫印迹(Western blotting)方法比较单增李斯特菌野生株和dsbA缺失株毒力基因的转录和表达水平差异;利用免疫荧光共定位方法观察DsbA缺失后对单增李斯特菌胞间迁移相关毒力因子ActA招募宿主肌动蛋白能力的影响(分析ActA与肌动蛋白共定位在细菌一侧形成“彗星状尾巴”的长短和数量);通过等温滴定量热法(isothermal titration calorimetry, ITC)研究DsbA与ActA互作情况。【结果】 dsbA缺失后,毒力基因转录水平无显著差异,但毒力因子InlA、InlB、PlcA和PlcB的分泌均显著降低,而ActA、溶血素O (listeriolysin O, LLO)分泌量显著升高。缺失株形成的彗星尾巴数量显著高于野生株且平均长度也较野生株增加,说明dsbA缺失导致细菌招募肌动蛋白能力明显增强。ITC试验发现DsbA与ActA结合存在吸热反应,说明二者互作。【结论】 本研究证实单增李斯特菌DsbA通过调控毒力蛋白减弱了对肌动蛋白募集,进而影响细菌胞间迁移。研究结果有助于系统理解单增李斯特菌在宿主感染过程中的毒力调控机制,对人兽共患胞内病原菌的污染控制具有重要公共卫生学意义。 相似文献
3.
DsbA蛋白是大肠杆菌周质空间内的巯基 /二硫键氧化酶 ,主要催化底物蛋白质二硫键的形成。利用定点突变结合色氨酸类似物标记技术 ,研究了DsbA蛋白的氧化还原性质和构象变化。结果显示 :(1 )DsbA蛋白的还原态比氧化态的结构更加稳定 ,说明DsbA的强氧化性来源于氧化态构象的紧张状态 ;(2 )DsbA氧化和还原态间特殊的荧光变化主要来源于Trp76在不同状态间微观环境的差异 ;(3 )色氨酸类似物标记不会对DsbA蛋白的结构和功能产生明显的影响 ,利用1 9F NMR进一步证实了DsbA氧化还原状态间的构象变化 ,而且这种变化主要影响Trp76的局部环境 ,而对Trp1 2 6的局部环境没有太大的影响 相似文献
4.
5.
真核生物中正确二硫键的形成是在内质网中由二硫键异构酶PDI及相关蛋白催化的,而在原核生物大肠杆菌中二硫键的氧化、还原和异构化发生在细胞周质,由一系列的二硫键氧化还原酶完成.从1991年Badewell发现第一个氧化还原蛋白DsbA开始,目前已发现有七种二硫键氧化还原酶.DsbB,DsbD、DsbE/CcmG及CcmH位于细胞膜上,DsbA、DsbC,DsbG在细胞周质空间中.DsbA和DsbB的氧化和电子传递链相联系,而DsbC、DsbD,DsbE,DsbG和CcmH的还原需要来自细胞质的电子传递. 相似文献
6.
7.
真核生物中正确二硫键的形成是在内质网中由二硫键异构酶PDI及相关蛋白催化的,而在原核生物大肠杆菌中二硫键的氧化、还原和异构化发生在细胞周质,由一系列的二硫键氧化还原酶完成。从1991年Badewell发现第一个氧化还原蛋白DsbA开始,目前已发现有七种二硫键氧化还原酶。DsbB、DsbD、DsbE/CcmG及CcmH位于细胞膜上,DsbA、DsbC、DsbG在细胞周质空间中。DsbA和DsbB的氧化和电子传递链相联系,而DsbC、DsbD、DsbE、DsbG和CcmH的还原需要来自细胞质的电子传递。 相似文献
8.
凝乳酶原(凝乳酶)二硫键Cys206—Cys210的定位突变 总被引:2,自引:0,他引:2
在对凝乳酶原二硫键Cys206-Cys210进行定位突变过程中发现,在相应的模板序列中有自身形成自由能为-16.1kcal/mol的茎环结构倾向,妨碍与引物结合,从而难以合成突变的DNA,采用快退火可解决此矛盾。5个突变基因均能在大肠杆菌中高效表达,除C206A外,约占细胞总蛋白的50%左右,突变的复性结果表明,Cys206-Cys210对凝乳酶原正确折叠不是绝对必需的,但相应位置的氨基酸取代对复性效率有显著影响,在5个突变体中,C206A/C210A的复性率分别为C206S/C210S、C210A、C210S的4.5倍、20倍和30倍,而C206A不能复性。C206A/C210A与C206S/C210S的远紫外CD光谱与野生型基本相同,其荧光发射光谱与野生型相比最大发射峰不变,而荧光强度有显著增加由于上述3个蛋白具有相同比活,说明突变分子能形成具有生物活性的空间构象,而只是某些色氨酸残基微环境受到微扰。 相似文献
9.
10.
二硫键形成蛋白A (disulfidebondformationproteinA ,DsbA)是大肠杆菌周质胞腔中辅助多种含有二硫键的蛋白质正确折叠并具有生物学活性的一种二硫键异构酶.通过统计实验设计的方法将生产重组DsbA的发酵过程进行了优化.首先通过Plackett Burman设计挑选出了对DsbA表达量影响较大的四个因素,然后再利用杂合设计进行实验,并通过拟合得到了响应曲面函数,但该函数的驻点是鞍点,因此不具有全局的极值.最后通过约束优化得到了较佳的实验点,在该实验点下DsbA的表达量比基本培养条件下提高了5 0 .14 % . 相似文献
11.
Oxidative refolding of the dimeric alkaline protease inhibitor (API) from Streptomyces sp. NCIM 5127 has been investigated. We demonstrate here that both isomerase and chaperone functions of the protein folding catalyst, protein disulfide isomerase (PDI), are essential for efficient refolding of denatured-reduced API (dr-API). Although the role of PDI as an isomerase and a chaperone has been reported for a few monomeric proteins, its role as a foldase in refolding of oligomeric proteins has not been demonstrated hitherto. Spontaneous refolding and reactivation of dr-API in redox buffer resulted in 45% to 50% reactivation. At concentrations <0.25 microM, reactivation rates and yields of dr-API are accelerated by catalytic amounts of PDI through its isomerase activity, which promotes disulfide bond formation and rearrangement. dr-API is susceptible to aggregation at concentrations >25 microM, and a large molar excess of PDI is required to enhance reactivation yields. PDI functions as a chaperone by suppressing aggregation and maintains the partially unfolded monomers in a folding-competent state, thereby assisting dimerization. Simultaneously, isomerase function of PDI brings about regeneration of native disulfides. 5-Iodoacetamidofluorescein-labeled PDI devoid of isomerase activity failed to enhance the reactivation of dr-API despite its intact chaperone activity. Our results on the requirement of a stoichiometric excess of PDI and of presence of PDI in redox buffer right from the initiation of refolding corroborate that both the functions of PDI are essential for efficient reassociation, refolding, and reactivation of dr-API. 相似文献
12.
Tertiary and quaternary structures of extracytoplasmic proteins containing more than one cysteine residue often require introduction of disulfide bonds. This process takes place in an oxidative environment, such as the periplasm of Gram-negative bacteria, and is catalyzed by Dsb (disulfide bond formation) proteins. Mutations in dsb genes influence the conformation and stability of many extracytoplasmic proteins. Thus, many pathogens become partially or fully attenuated due to improper folding of proteins that act as virulence factors. This review summarizes the current knowledge on Dsb proteins and their effect on the pathogenicity of Gram-negative bacteria. The potential application of Dsb proteins in biotechnology is also discussed. 相似文献
13.
B. Heras M. Kurz R. Jarrott K. A. Byriel A. Jones L. Thny‐Meyer J. L. Martin 《Acta Crystallographica. Section F, Structural Biology Communications》2007,63(11):953-956
Bacterial Dsb proteins catalyse the in vivo formation of disulfide bonds, a critical step in the stability and activity of many proteins. Most studies on Dsb proteins have focused on Gram‐negative bacteria and thus the process of oxidative folding in Gram‐positive bacteria is poorly understood. To help elucidate this process in Gram‐positive bacteria, DsbA from Staphylococcus aureus (SaDsbA) has been focused on. Here, the expression, purification, crystallization and preliminary diffraction analysis of SaDsbA are reported. SaDsbA crystals diffract to a resolution limit of 2.1 Å and belong to the hexagonal space group P65 or P61, with unit‐cell parameters a = b = 72.1, c = 92.1 Å and one molecule in the asymmetric unit (64% solvent content). 相似文献
14.
R. Jarrott S. R. Shouldice G. Gun
ar M. Totsika M. A. Schembri B. Heras 《Acta Crystallographica. Section F, Structural Biology Communications》2010,66(5):601-604
Pathogens require protein‐folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K‐12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K‐12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram‐negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P21, P21212 and C2, respectively. 相似文献
15.
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli. 相似文献
16.
We have developed a bacterial two-hybrid system for the detection of interacting proteins that capitalizes on the folding quality control mechanism of the Twin Arginine Transporter (Tat) pathway. The Tat export pathway is responsible for the membrane translocation of folded proteins, including proteins consisting of more than one polypeptide, only one of which contains a signal peptide (\"hitchhiker export\"). Here, one protein (bait) is expressed as a fusion to a Tat signal peptide, whereas the second protein (prey) is fused to a protein reporter that can confer a phenotype only after export into the bacterial periplasmic space. Since the prey-reporter fusion lacks a signal peptide, it can only be exported as a complex with the bait-signal peptide fusion that is capable of targeting the Tat translocon. Using maltose-binding protein as a reporter, clones expressing interacting proteins can be grown on maltose minimal media or on MacConkey plates. In addition, we introduce the use of the cysteine disulfide oxidase DsbA as a reporter. Export of a signal peptide-prey:bait-DsbA complex into the periplasm allows complementation of dsbA(-) mutants and restores the formation of active alkaline phosphatase, which in turn can be detected by a chromogenic assay. 相似文献
17.
Babu A. Manjasetty Jens Hennecke Rudi Glockshuber Udo Heinemann 《Acta Crystallographica. Section D, Structural Biology》2004,60(2):304-309
The thiol‐disulfide oxidoreductase DsbA is required for efficient formation of disulfide bonds in the Escherichia coli periplasm. The enzyme is the strongest oxidant of the family of thioredoxin‐like proteins and three‐dimensional structures of both oxidized and reduced forms are known. DsbA consists of a catalytic thioredoxin‐like domain and a helical domain that is inserted into the thioredoxin motif. Here, the X‐ray structure of a circularly permuted variant, cpDsbAQ100T99, is reported in which the natural termini are joined by the pentapeptide linker GGGTG, leading to a continuous thioredoxin domain, and new termini that have been introduced in the helical domain by breaking the peptide bond Thr99–Gln100. cpDsbAQ100T99 is catalytically active in vivo and in vitro. The crystal structure of oxidized cpDsbAQ100T99, determined by molecular replacement at 2.4 Å resolution, was found to be very similar to that of wild‐type DsbA. The lower thermodynamic stability of cpDsbAQ100T99 relative to DsbA is associated with small structural changes within the molecule, especially near the new termini and the circularizing linker. The active‐site helices and adjacent loops display increased flexibility compared with oxidized DsbA. 相似文献
18.
Si‐Hyeon Um Jin‐Sik Kim Kangseok Lee Nam‐Chul Ha 《Acta Crystallographica. Section F, Structural Biology Communications》2014,70(9):1167-1172
Disulfide‐bond formation, mediated by the Dsb family of proteins, is important in the correct folding of secreted or extracellular proteins in bacteria. In Gram‐negative bacteria, disulfide bonds are introduced into the folding proteins in the periplasm by DsbA. DsbE from Escherichia coli has been implicated in the reduction of disulfide bonds in the maturation of cytochrome c. The Gram‐positive bacterium Mycobacterium tuberculosis encodes DsbE and its homologue DsbF, the structures of which have been determined. However, the two mycobacterial proteins are able to oxidatively fold a protein in vitro, unlike DsbE from E. coli. In this study, the crystal structure of a DsbE or DsbF homologue protein from Corynebacterium diphtheriae has been determined, which revealed a thioredoxin‐like domain with a typical CXXC active site. Structural comparison with M. tuberculosis DsbF would help in understanding the function of the C. diphtheriae protein. 相似文献
19.
以大肠杆菌基因组DNA为模板,设计引物扩增得到天冬氨酸酶基因,将其重组于胞内融合表达型T载体中,重组质粒转化表达宿主大肠杆菌BL21(DE3)。SDS-PAGE分析表明,工程菌经IPTG诱导,表达大量表观分子量约75kD的融合蛋白。经试验,工程菌细胞具有较高的天冬氨酸酶活性,融合形式的酶最适温度37℃,最适pH8.5,融合伴侣DsbA的存在对酶活没有影响。 相似文献