首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary hearing impairment is an extremely heterogeneous trait, with more than 70 identified loci. Only two of these loci are associated with an auditory phenotype that predominantly affects the low frequencies (DFNA1 and DFNA6/14). In this study, we have completed mutation screening of the WFS1 gene in eight autosomal dominant families and twelve sporadic cases in which affected persons have low-frequency sensorineural hearing impairment (LFSNHI). Mutations in this gene are known to be responsible for Wolfram syndrome or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), which is an autosomal recessive trait. We have identified seven missense mutations and a single amino acid deletion affecting conserved amino acids in six families and one sporadic case, indicating that mutations in WFS1 are a major cause of inherited but not sporadic low-frequency hearing impairment. Among the ten WFS1 mutations reported in LFSNHI, none is expected to lead to premature protein truncation, and nine cluster in the C-terminal protein domain. In contrast, 64% of the Wolfram syndrome mutations are inactivating. Our results indicate that only non-inactivating mutations in WFS1 are responsible for non-syndromic low-frequency hearing impairment.  相似文献   

2.
Non-syndromic low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of hearing loss in which frequencies ≤2000 Hz predominantly are affected. To date, different mutations in two genes, DIAPH1 and WFSI, have been found to be associated with LFSNHL.Here, we report a five-generation Chinese family with postlingual and progressive LFSNHL. We mapped the disease locus to a 2.5 Mb region on chromosome 4p16 between markers SNP_A-2167174 and D4S431, overlapping with the DFNA6/14/38 locus. Sequencing of candidate gene revealed a heterozygous c.2086C>T substitution in exon 8 of WFS1, leading to p. H696Y substitution at the C-terminus of Wolframin (WFS1).In addition, we performed mutational screening of WFS1 in 37 sporadic patients, 7-50 years of age, with LFSNHL. We detected a heterozygous c.2108G>A substitution in exon 8 of WFS1, leading to p. R703H substitution in a patient. The H696 and R703 in WFS1 are highly conserved across species, including human, orangutan, rat, mouse, and frog (Xenopus). Sequence analysis demonstrated the absence of c.2086C>T or c.2108G>A substitutions in the WFS1 genes among 200 unrelated control subjects of Chinese background, supporting the hypothesis that they represent causative mutations, and not rare polymorphisms. Our data provide additional molecular and clinical information for establishing a better genotype-phenotype correlation for LFSNHL.  相似文献   

3.
Myosins have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Different members of the myosin superfamily are responsible for syndromic and nonsyndromic hearing impairment in both humans and mice. MYH14 encodes one of the heavy chains of the class II nonmuscle myosins, and it is localized within the autosomal dominant hearing impairment (DFNA4) critical region. After demonstrating that MYH14 is highly expressed in mouse cochlea, we performed a mutational screening in a large series of 300 hearing-impaired patients from Italy, Spain, and Belgium and in a German kindred linked to DFNA4. This study allowed us to identify a nonsense and two missense mutations in large pedigrees, linked to DFNA4, as well as a de novo allele in a sporadic case. Absence of these mutations in healthy individuals was tested in 200 control individuals. These findings clearly demonstrate the role of MYH14 in causing autosomal dominant hearing loss and further confirm the crucial role of the myosin superfamily in auditive functions.  相似文献   

4.
Nonsyndromic low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of hearing loss that affects frequencies at 2,000 Hz and below. Recently, we reported five different heterozygous missense mutations in the Wolfram syndrome gene, WFS1, found to be responsible for LFSNHL in six families. One of the five mutations, A716T, may be a common cause of LFSNHL, as it has been reported in three families to date (Bespalova et al., 2001; Young et al., 2001). We have developed a PCR-based restriction fragment-length polymorphism (RFLP) assay to detect the A716T mutation in a simple, specific test. This method was evaluated with DNA samples from a family in which the A716T mutation was segregating with LFSNHL. This simple assay successfully detected the presence of the A716T mutation in all of the individuals predicted to be affected, based on audiologic results. Therefore, this assay can be routinely used for initial screening of the A716T mutation in patients with LFSNHL, before screening the entire coding region of the WFS1 gene.  相似文献   

5.
Minami SB  Masuda S  Usui S  Mutai H  Matsunaga T 《Gene》2012,501(2):193-197
It is rarely reported that two distinct genetic mutations affecting hearing have been found in one family. We report on a family exhibiting comorbid mutation of GJB2 and WFS1. A four-generation Japanese family with autosomal dominant sensorineural hearing loss was studied. In 7 of the 24 family members, audiometric evaluations and genetic analysis were performed. We detected A-to-C nucleotide transversion (c.2576G>C) in exon 8 of WFS1 that was predicted to result in an arginine-to-proline substitution at codon 859 (R859P), G-to-A transition (c.109G>A) in exon 2 of GJB2 that was predicted to result in a valine-to-isoleucine substitution at codon 37 (V37I), and C-to-T transition (c.427C>T) in exon 2 of GJB2 that was predicted to result in an arginine-to-tryptophan substitution at codon 143 (R143W). Two individuals who had heterozygosity of GJB2 mutations and heterozygosity of WFS1 mutations showed low-frequency hearing loss. One individual who had homozygosity of GJB2 mutation without WFS1 mutation had moderate, gradual high tone hearing loss. On the other hand, a moderate flat loss configuration was seen in one individual who had compound heterozygosity of GJB2 and heterozygosity of WFS1 mutations. Our results indicate that the individual who has both GJB2 and WFS1 mutations can show GJB2 phenotype.  相似文献   

6.
DFNA23, a novel locus for autosomal dominant nonsyndromic hearing loss, was identified in a Swiss German kindred. DNA samples were obtained from 22 family members in three generations: 10 with hearing impairment caused by the DFNA23 locus, 8 unaffected offspring, and 4 spouses of hearing-impaired pedigree members. In this kindred, the hearing-impaired family members have prelingual bilateral symmetrical hearing loss. All audiograms from hearing-impaired individuals displayed sloping curves, with hearing ability ranging from normal hearing to mild hearing loss in low frequencies, normal hearing to profound hearing loss in mid frequencies, and moderate to profound hearing loss in high frequencies. A conductive component existed for 50% of the hearing-impaired family members. The majority of the hearing-impaired family members did not display progression of hearing loss. The DFNA23 locus maps to 14q21-q22. Linkage analysis was carried out under a fully penetrant autosomal dominant mode of inheritance with no phenocopies. A maximum multipoint LOD score of 5.1 occurred at Marker D14S290. The 3.0-LOD unit support interval is 9.4 cM and ranged from marker D14S980 to marker D14S1046.  相似文献   

7.
Theγ-actin(ACTG1)gene is a cytoplasmic nonmuscle actin gene,which encodes a major cytoskeletal protein in the sensory hair cells of the cochlea.Mutations in ACTG1 were found to cause autosomal dominant,progressive,sensorineural hearing loss linked to the DFNA 20/26 locus on chromosome 17q25.3 in European and American families,respectively.In this study,a novel missense mutation (c.364A>G;p.I122V)co-segregated with the affected individuals in the family and did not exist in the unaffected family members and 150 unrelated normal controls.The alteration of residue I1e122 was predicted to damage its interaction with actin-binding proteins,which may cause disruption of hair cell organization and function.These findings strongly suggested that the I122V mutation in ACTG1 caused autosomal dominant non-syndromic hearing impairment in a Chinese family and expanded the spectrum of ACTG1 mutations causing hearing loss.  相似文献   

8.
Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles the previously published DFNA11 family. The affected family members show a flat audiogram at young ages and only modest progression, most clearly at the high frequencies. In addition, they suffer from minor vestibular symptoms. Linkage analysis yielded a maximum two-point lodscore of 3.43 for marker D11S937 located within 1 cM of the myosin VIIA gene. The myosin VIIA gene was sequenced and 11 nucleotide variations were found. Ten nucleotide changes represent benign intronic variants, silent exon mutations or non-pathologic amino acid substitutions. One variant, a c.1373AT transversion that is heterozygously present in all affected family members and absent in 300 healthy individuals, is predicted to result in an Asn458Ile amino acid substitution. Asn458 is located in a region of the myosin VIIA motor domain that is highly conserved in different classes of myosins and in myosins of different species. To evaluate whether the Asn458Ile mutation was indeed responsible for the hearing impairment, a molecular model of myosin VIIA was built based on the known structure of the myosin II heavy chain from Dictyostelium discoideum. In this model, conformational changes in the protein caused by the amino acid substitution Asn458Ile are predicted to disrupt ATP/ADP binding and impair the myosin power-stroke, which would have a severe effect on the function of the myosin VIIA protein.  相似文献   

9.
A mutation in human DFNA5 is associated with autosomal dominant nonsyndromic hearing impairment. The function of DFNA5 protein remains unknown and no experimental model has been described so far. Here we describe fission yeast Schizosaccharomyces pombe as a model organism for studying the function of heterologously expressed DFNA5. We have expressed wild-type as well as mutant DFNA5 alleles under control of regulatable nmt1 promoter. Yeast cells tolerated expression of wild-type DFNA5, while expression of the mutant DFNA5 allele, which is responsible for nonsyndromic autosomal dominant hearing impairment, led to cell cycle arrest. We identified new rat and horse DFNA5 homologues and we describe a domain of homology shared between DFNA5 and the Mcm10 family of DNA replication proteins. Genetic interactions between heterologously expressed DFNA5 and a fission yeast cdc23 (mcm10) mutant support a possible link between DFNA5 and Mcm10 proteins.  相似文献   

10.
Myosin I isozymes have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Unconventional myosins were among the first family of proteins found to be associated with hearing loss in both humans and mice. Here, we report the identification of a nonsense mutation, of a trinucleotide insertion leading to an addition of an amino acid, and of six missense mutations in MYO1A cDNA sequence in a group of hearing-impaired patients from Italy. MYO1A, which is located within the DFNA48 locus, is the first myosin I family member found to be involved in causing deafness and may be a major contributor to autosomal dominant-hearing loss.  相似文献   

11.
常染色体显性遗传非综合征型耳聋致病基因定位研究   总被引:1,自引:0,他引:1  
耳聋具有高度的遗传异质性, 迄今已定位了51个常染色体显性遗传非综合征型耳聋(autosomal dominant non-syndromic sensorineural hearing loss, DFNA)基因位点, 20个DFNA相关基因被克隆.文章收集了一个DFNA巨大家系, 家系中有血缘关系的家族成员共170人, 对73名家族成员进行了详细的病史调查、全身检查和耳科学检查, 提示39人有不同程度的迟发性感音神经性听力下降, 未见前庭及其他系统的异常.应用ABI公司382个常染色体微卫星多态标记进行全基因组扫描连锁分析, 将该家系致聋基因定位于14q12-13处D14S1021-D14S70之间约7.6 cM (3.18 Mb)的区域, 最大LOD值为6.69 (D14S1040), 与已知DFNA9位点有4.7 cM (2.57 Mb)的重叠区, DFNA9致病基因COCH位于重叠区域内.下一步拟进行COCH基因的突变筛查, 以揭示该家系耳聋的分子致病机制.  相似文献   

12.
耳聋具有高度的遗传异质性, 迄今已定位了51个常染色体显性遗传非综合征型耳聋(autosomal dominant non-syndromic sensorineural hearing loss, DFNA)基因位点, 20个DFNA相关基因被克隆。文章收集了一个DFNA巨大家系, 家系中有血缘关系的家族成员共170人, 对73名家族成员进行了详细的病史调查、全身检查和耳科学检查, 提示39人有不同程度的迟发性感音神经性听力下降, 未见前庭及其他系统的异常。应用ABI公司382个常染色体微卫星多态标记进行全基因组扫描连锁分析, 将该家系致聋基因定位于14q12-13处D14S1021-D14S70之间约7.6 cM (3.18 Mb)的区域, 最大LOD值为6.69 (D14S1040), 与已知DFNA9位点有4.7 cM (2.57 Mb)的重叠区, DFNA9致病基因COCH位于重叠区域内。下一步拟进行COCH基因的突变筛查, 以揭示该家系耳聋的分子致病机制。  相似文献   

13.
Heterozygous mutations in the WFS1 gene are responsible for autosomal dominant low frequency hearing loss at the DFNA6/14 locus, while homozygous or compound heterozygous mutations underlie Wolfram syndrome. In this study we examine expression of wolframin, the WFS1-gene product, in mouse inner ear at different developmental stages using immunohistochemistry and in situ hybridization. Both techniques showed compatible results and indicated a clear expression in different cell types of the inner ear. Although there were observable developmental differences, no differences in staining pattern or gradients of expression were observed between the basal and apical parts of the cochlea. Double immunostaining with an endoplasmic reticulum marker confirmed that wolframin localizes to this organelle. A remarkable similarity was observed between cells expressing wolframin and the presence of canalicular reticulum, a specialized form of endoplasmic reticulum. The canalicular reticulum is believed to be involved in the transcellular movements of ions, an important process in the physiology of the inner ear. Although there is nothing currently known about the function of wolframin, our results suggest that it may play a role in inner ear ion homeostasis as maintained by the canalicular reticulum.  相似文献   

14.
Nonsyndromic hearing loss is one of the most genetically heterogeneous traits known. A total of 30 autosomal dominant nonsyndromic hearing-loss loci have been mapped, and 11 genes have been isolated. In the majority of cases, autosomal dominant nonsyndromic hearing loss is postlingual and progressive, with the exception of hearing impairment in families in which the impairment is linked to DFNA3, DFNA8/12, and DFNA24, the novel locus described in this report. DFNA24 was identified in a large Swiss German kindred with a history of autosomal dominant hearing loss that dates back to the middle of the 19th century. The hearing-impaired individuals in this kindred have prelingual, nonprogressive, bilateral sensorineural hearing loss affecting mainly mid and high frequencies. The DFNA24 locus maps to 4q35-qter. A maximum multipoint LOD score of 11.6 was obtained at 208.1 cM at marker D4S1652. The 3.0-unit support interval for the map position of this locus ranges from 205.8 cM to 211.7 cM (5.9 cM).  相似文献   

15.
In this study, a five-generation Chinese family (family F013) with progressive autosomal dominant hearing loss was mapped to a critical region spanning 28.54 Mb on chromosome 9q31.3-q34.3 by linkage analysis, which was a novel DFNA locus, assigned as DFNA56. In this interval, there were 398 annotated genes. Then, whole exome sequencing was applied in three patients and one normal individual from this family. Six single nucleotide variants and two indels were found co-segregated with the phenotypes. Then using mass spectrum (Sequenom, Inc.) to rank the eight sites, we found only the TNC gene be co-segregated with hearing loss in 53 subjects of F013. And this missense mutation (c.5317G>A, p.V1773M ) of TNC located exactly in the critical linked interval. Further screening to the coding region of this gene in 587 subjects with nonsyndromic hearing loss (NSHL) found a second missense mutation, c.5368A>T (p. T1796S), co-segregating with phenotype in the other family. These two mutations located in the conserved region of TNC and were absent in the 387 normal hearing individuals of matched geographical ancestry. Functional effects of the two mutations were predicted using SIFT and both mutations were deleterious. All these results supported that TNC may be the causal gene for the hearing loss inherited in these families. TNC encodes tenascin-C, a member of the extracellular matrix (ECM), is present in the basilar membrane (BM), and the osseous spiral lamina of the cochlea. It plays an important role in cochlear development. The up-regulated expression of TNC gene in tissue repair and neural regeneration was seen in human and zebrafish, and in sensory receptor recovery in the vestibular organ after ototoxic injury in birds. Then the absence of normal tenascin-C was supposed to cause irreversible injuries in cochlea and caused hearing loss.  相似文献   

16.
A single missense mutation was identified in a novel, highly conserved zinc-finger gene, ZCD2, in three consanguineous families of Jordanian descent with Wolfram syndrome (WFS). It had been shown that these families did not have mutations in the WFS1 gene (WFS1) but were mapped to the WFS2 locus at 4q22-25. A G-->C transversion at nucleotide 109 predicts an amino acid change from glutamic acid to glutamine (E37Q). Although the amino acid is conserved and the mutation is nonsynonymous, the pathogenesis for the disorder is because the mutation also causes aberrant splicing. The mutation was found to disrupt messenger RNA splicing by eliminating exon 2, and it results in the introduction of a premature stop codon. Mutations in WFS1 have also been found to cause low-frequency nonsyndromic hearing loss, progressive hearing loss, and isolated optic atrophy associated with hearing loss. Screening of 377 probands with hearing loss did not identify mutations in the WFS2 gene. The WFS1-encoded protein, Wolframin, is known to localize to the endoplasmic reticulum and plays a role in calcium homeostasis. The ZCD2-encoded protein, ERIS (endoplasmic reticulum intermembrane small protein), is also shown to localize to the endoplasmic reticulum but does not interact directly with Wolframin. Lymphoblastoid cells from affected individuals show a significantly greater rise in intracellular calcium when stimulated with thapsigargin, compared with controls, although no difference was observed in resting concentrations of intracellular calcium.  相似文献   

17.
DFNA16 is a form of autosomal dominant non-syndromic hearing loss (ADNSHL) characterized by fluctuating progressive hearing impairment. Earlier, we mapped the deafness-causing gene to chromosome 2q23-24.3. In this paper, we describe fine mapping results using additional markers tightly linked to the DFNA16 candidate region. Critical recombinants at markers D2S354 and D2S124 define a 3.5-cM interval that contains the DFNA16 gene. Positional candidate genes include two members of the voltage-gated sodium channel family, the type 2 alpha subunit (SCN2A) and the type 3 alpha subunit (SCN3A). After showing that SCN2A is expressed in human fetal cochlea, we determined its genomic structure to facilitate mutation screening in our DFNA16 kindred. We also determined the genomic structure of SCN3A. These two genes are oriented head-to-head, with their 5' ends separated by approximately 40 kb; their homology is 82% at the nucleotide level, and 85% for identities and 90% for positives at the amino acid level. They share similar genomic structures and have alternative splice isoforms that are developmentally regulated and highly conserved between species. Although no DFNA16-causing mutations were found in either gene, haplotype analysis with polymorphic markers in SCN2A introns further narrowed the candidate gene interval to the region flanked by D2S354 and STS SHGC-82894.  相似文献   

18.
Mutations of MYO6 are associated with recessive deafness,DFNB37   总被引:10,自引:0,他引:10       下载免费PDF全文
Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37, our sequence analyses of MYO6 reveal a frameshift mutation (36-37insT), a nonsense mutation (R1166X), and a missense mutation (E216V). These mutations, along with a previously published missense allele linked to autosomal dominant progressive hearing loss (DFNA22), provide an allelic spectrum that probes the relationship between myosin VI dysfunction and the resulting phenotype.  相似文献   

19.
为了克隆定位于5号染色体微卫星标记D5S2056和D5S638之间约8.8 cM的区间内的非综合征性常染色体显性遗传性耳聋 DFNA52 (OMIM: 607683)的致病基因, 文章根据基因在耳蜗组织的表达情况, 筛选出20个候选基因, 设计合成了扩增20个基因外显子及外显子与内含子交界的引物, 用DNA直接测序法进行序列变异分析。结果显示, 在基因外显子及侧翼区共发现了45个单核苷酸多态, 其中42个变异在多态数据库已报道, 其余3个为新发现的单核苷酸多态, 序列变异与疾病表型无共分离现象, 排除了这些基因外显子突变导致遗传性耳聋的可能性。  相似文献   

20.
Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing loss. Auditory brainstem response (ABR) test of the youngest patient showed a special result with nearly normal threshold but prolonged latency, decreased amplitude, and the abnormal waveform morphology. Exome sequencing of the proband found four candidate variants in known hearing loss genes. Sanger sequencing in all family members found a novel variant c.1253T>A (p.M418K) in TMC1 at DFNA36 that co-segregated with the phenotype. This mutation in TMC1 is orthologous to the mutation found in the hearing loss mouse model named Bth ten years ago. In another 51 Chinese autosomal dominant hearing loss families, we screened the segments containing the dominant mutations of TMC1 and no functional variants were found. TMC1 is expressed in the hair cells in inner ear. Given the already known roles of TMC1 in the mechanotransduction in the cochlea and its expression in inner ear, our results may provide an interesting perspective into its function in inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号