首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
苯丙氨酸羟化酶(PAH)是芳香族氨基酸羟化酶家族(AAAHs)的一员,催化苯丙氨酸(Phe)转化为酪氨酸(Tyr)。运用Western blotting技术检测沙蚕PAH免疫原性。制作沙蚕头部石蜡切片,运用免疫组织化学技术,检测PAH蛋白表达定位情况。解剖剥离沙蚕脑组织,提取总RNA,运用RT-PCR技术克隆pah基因片段,构建质粒并转化入大肠杆菌中扩增,挑单一均匀菌落培养,双酶切鉴定后测序并比对同源性。Western blotting结果表明pah表达的蛋白存在于沙蚕脑内,免疫组化标记技术结果表明苯丙氨酸羟化酶主要分布在日本刺沙蚕前脑中腹侧、中脑背侧和两侧。RT-PCR结果表明沙蚕脑内存在苯丙氨酸羟化酶基因,且与多种动物pah具有同源性。在蛋白质和核酸水平鉴定了低等环节动物日本刺沙蚕脑组织内苯丙氨酸羟化酶的存在,为进一步研究无脊椎动物中枢神经系统内芳香族氨基酸羟化酶的基因分化奠定基础。  相似文献   

2.
<正> 苯丙氨酸(Phemylalanine,Phe)、酪氨酸(Tyrosine,Tyr)和色氨酸(Tyrptophan,Trp),即所谓芳香族氨基酸(aromatic amino acid),不仅本身结构较谷氨酸复杂(表1),而且合成机制亦较多采,特别是其用途的日益广泛,也使人们开始注意其生产技术。大家都知道,苯丙氨酸和色氨酸是人体必需氨基酸,酪氨酸可由苯丙氨酸转换、而提供人体。芳香族  相似文献   

3.
芳香族氨基酸包括L-苯丙氨酸(L-Phe)、L-酪氨酸(L-Tyr)和L-色氨酸(L-Trp),是生物体内非常重要的必需氨基酸,具有重要的生物学功能,广泛应用于医药、食品和饲料等领域。本文中,笔者介绍了芳香族氨基酸的生物合成途径以及代谢调控,综述了构建大肠杆菌芳香族氨基酸生产菌株的代谢工程策略。针对现阶段工业化生产芳香族氨基酸存在的问题,笔者对进一步应用代谢工程策略改造芳香族氨基酸菌株进行了展望。  相似文献   

4.
夏温娜  孙雨  闵聪  韩威  吴胜 《生物工程学报》2012,28(11):1346-1358
芳香族L-氨基酸是合成许多药物、农药、精细化学品和食品添加剂的重要手性砌块(Chiral buildingblocks)。利用酶催化具有高活性和高立体选择性的特点合成手性砌块是目前不对称合成领域重要的研究方向。通过对不同来源转氨酶的进化分析,选择分别源自原核生物大肠杆菌Escherichia coli和真核生物酿酒酵母Saccharomyces cerevisia中的两种具有代表性Ⅰ型芳香族转氨酶TyrB和Aro8,比较研究了两种转氨酶通过平衡逆转不对称氨化催化合成芳香族L-氨基酸的反应过程和催化效率。重组转氨酶TyrB和Aro8都能有效地合成天然芳香族氨基酸苯丙氨酸和酪氨酸以及非天然氨基酸苯甘氨酸。手性HPLC分析表明,合成的氨基酸都是L-构型的,e.e值等于100%。L-丙氨酸是适宜的氨基供体,转氨酶TyrB和Aro8都不能利用D-型氨基酸作为氨基供体。反应体系中氨基供体L-丙氨酸和氨基受体芳香族α-酮酸的最适摩尔比为4∶1。底物芳香族α-酮酸分子结构中芳香环上的取代基以及脂肪酸碳链部分的长度都对酶催化的转氨效率有显著的影响。在制备规模试验中,TyrB催化不对称转氨反应合成L-苯甘氨酸、L-苯丙氨酸和L-酪氨酸的比生产速率为0.28 g/(g.h)、0.31 g/(g.h)和0.60 g/(g.h),Aro8催化上述反应的比生产速率分别为0.61 g/(g.h)、0.48 g/(g.h)和0.59 g/(g.h)。研究结果对利用转氨酶通过平衡逆转不对称催化合成芳香族L-氨基酸的工业化应用具有指导意义。  相似文献   

5.
酪氨酸和其他两种芳香族氨基酸——色氨酸和苯丙氨酸构成了各种蛋白质的生色团,它们是蛋白质吸收光能的主要部位,从这个意义上讲,生色团氨基酸的光解反应是了解蛋白质光化学的基础。  相似文献   

6.
在细菌、真菌及植物中,分支酸是一种位于关键分叉点上的中间代谢物,是所有芳香族氨基酸合成的共同前体.它可在双功能酶分支酸变位酶(CM)和预苯酸脱水酶(PDT)的催化下合成苯丙氨酸,在另一个双功能酶分支酸变位酶和预苯酸脱氢酶(PDH)的催化下合成酪氨酸.前者被称为P蛋白,后者被称为T蛋白.大肠杆菌P蛋白和T蛋白有着类似的结构,P蛋白由CMp、PDT和调节结构域3个独立结构域组成,其变构调节因子是苯丙氨酸.T蛋白只有CMt和PDH两个独立结构域组成,起变构调节作用的调节结构域与PDH密不可分,其变构调节因子是酪氨酸.为了研究P蛋白和T蛋白的调节结构域的变构调节作用,应用融合蛋白技术将P蛋白和T蛋白的调节结构域进行了互换.结果发现,互换了的调节结构域仍然具有变构调节作用,而且调节结构域的互换导致了变构调节因子的互换,说明调节结构域对酶活性的调节作用是非专一的,而其R结构域与调节因子的结合却是专一的.  相似文献   

7.
高效液相色谱法快速直接测定酪氨酸、苯丙氨酸和色氨酸   总被引:13,自引:5,他引:8  
利用酪氨酸、苯丙氨酸和色氨酸具有紫外吸收这一特征 ,选用 2 3 0 nm、2 1 0 nm和 2 78nm的检测波长 ,在 7min内分别检测了酪氨酸、苯丙氨酸和色氨酸。三种氨基酸在 0 .0 1~ 1 .0 μmol/ ml浓度范围内呈显著的直线线性关系 ,相关系数均在 0 .9998以上。该方法不需衍生 ,直接测定 ,灵敏快速 ,结果准确可靠 ,适用于氨基酸注射液中低含量的酪氨酸和色氨酸准确检测 ,以及该三种氨基酸原料药纯度检测。  相似文献   

8.
把人工神经网络用于六种氨基酸(酪氨酸、色氨酸、苯丙氨酸、胱氨酸、组氨酸,3,4—二羟基苯丙氨酸)混合物紫外光谱的定量分析,以酪氨酸为例,不经分离测定了混合溶液中酪氨酸的含量,为氨基酸的多组分分析提供了一种新方法。并与卡尔曼滤波方法进行了比较,表明神经网络在一些方面优于卡尔曼滤波方法。  相似文献   

9.
【目的】通过增加北京棒杆菌(Corynebacterium pekinense)PD-67芳香族氨基酸合成的前体物质磷酸烯醇式丙酮酸(PEP)的供应,解除终产物对芳香族氨基酸合成途径中第一个酶同时也是关键酶3-脱氧-D-阿拉伯庚酮糖-7-磷酸合酶(DS)的反馈抑制并提高抗反馈抑制的DS的活力,使碳流更多地流向芳香族氨基酸合成途径,从而积累更多L-色氨酸。【方法】运用PCR技术扩增北京棒杆菌PD-67磷酸烯醇式丙酮酸合酶基因pps,与表达载体连接构建重组质粒pXPS;运用重叠PCR技术定点突变大肠杆菌(Escherichia coli)受苯丙氨酸调控的DS基因aroG,使相应的编码氨基酸序列发生突变:Leu175Asp,新的基因命名为aroGfbr,与表达载体连接构建重组质粒pXA;构建pps和aroGfbr的共表达重组质粒pXAPS。将3个重组质粒分别转入菌株PD-67,构建工程菌株PD-67/pXPS、PD-67/pXA和PD-67/pXAPS。通过摇瓶发酵研究工程菌株的发酵特性。【结果】酶活分析结果表明,pps基因和aroGfbr基因在北京棒杆菌PD-67中均实现了表达。工程菌株PD-67/pXA粗酶液DS抗反馈抑制分析表明,AroGfbr已解除酪氨酸和苯丙氨酸的反馈抑制。过表达pps基因和aroGfbr基因分别使工程菌L-色氨酸产量提高12.1%和26.8%,双基因共表达可使工程菌的产酸量提高35.9%。【结论】北京棒杆菌PD-67pps基因的过表达以及大肠杆菌来源的解除反馈抑制的aroGfbr的过表达均有助于增加PD-67 L-色氨酸的合成,而双基因的共表达可以进一步提高L-色氨酸的积累量。  相似文献   

10.
把人工神经网络用于六种氨基酸(酪氨酸、色氨酸、苯丙氨酸、胱氨酸、组氨酸,3,4—二羟基苯丙氨酸)混合物紫外光谱的定量分析,以酪氨酸为例,不经分离测定了混合溶液中酪氨酸的含量,为氨基酸的多组分分析提供了一种新方法。并与卡尔曼滤波方法进行了比较,表明神经网络在一些方面优于卡尔曼滤波方法。  相似文献   

11.
The social amoeba Dictyostelium discoideum contains only one aromatic amino acid hydroxylase (AAAH) gene compared to at least three in metazoans. As shown in this work this gene codes for a phenylalanine hydroxylase (DictyoPAH) and phylogenetic analysis places this enzyme close to the precursor AAAHs, aiding to define the evolutionary history of the AAAH family. DictyoPAH shows significant similarities to other eukaryote PAH, but it exhibits higher activity with tetrahydrodictyopterin (DH4) than with tetrahydrobiopterin (BH4) as cofactor. DH4 is an abundant tetrahydropterin in D. discoideum while BH4 is the natural cofactor of the AAAHs in mammals. Moreover, DictyoPAH is devoid of the characteristic regulatory mechanisms of mammalian PAH such as positive cooperativity for L-Phe and activation by preincubation with the substrate. Analysis of the few active site substitutions between DictyoPAH and mammalian PAH, including mutant expression analysis, reveals potential structural determinants for allosteric regulation.  相似文献   

12.
The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.  相似文献   

13.
Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.  相似文献   

14.
It has been generally assumed that a tetrahydropterin (2-amino-5,6,7,8-tetrahydro-4-pteridinone) is essential for activity of the three aromatic amino acid hydroxylases. In this report it is shown that appropriately substituted pyrimidines can assume the role of cofactor for phenylalanine hydroxylase. 2,5,6-Triamino-4-pyrimidinone(V) and 5-benzylamino-2,6-diamino-4-pyrimidinone(VI) possess the same Km values (0.1 mM and 0.003 mM) and stoichiometry of tyrosine generated to cofactor consumed (0.4 and 1.0) as their corresponding pteridine analogs, tetrahydropterin(III) and 6-phenyltetrahydropterin(IV). However, the rates with pyrimidines are lower. The ratio of rates VIII = 0.045 and VIIV = 0.015. These results indicate that pteridine carbons 6 and 7 are not fundamental to cofactor binding or function, though they markedly influence the maximum velocity of hydroxylation. Pyrimidine cofactors of phenylalanine hydroxylase are valuable probes for the elucidation of the binding forces, transition states, and mechanism of oxygen activation of these hydroxylases.  相似文献   

15.
The iron atom in the nonheme iron monooxygenase phenylalanine hydroxylase is bound on one face by His285, His290, and Glu330. This arrangement of metal ligands is conserved in the other aromatic amino acid hydroxylases, tyrosine hydroxylase and tryptophan hydroxylase. A similar 2-His-1-carboxylate facial triad of two histidines and an acidic residue are the ligands to the iron in other nonheme iron enzymes, including the α-ketoglutarate-dependent hydroxylases and the extradiol dioxygenases. Previous studies of the effects of conservative mutations of the iron ligands in tyrosine hydroxylase established that there is some plasticity in the nature of the ligands and that the three ligands differ in their sensitivity to mutagenesis. To determine the generality of this finding for enzymes containing a 2-His-1-carboxylate facial triad, the His285, His290, and Glu330 in rat phenylalanine hydroxylase were mutated to glutamine, glutamate, and histidine. All of the mutant proteins had low but measurable activities for tyrosine formation. In general, mutation of Glu330 had the greatest effect on activity and mutation of His290 the least. All of the mutations resulted in an excess of tetrahydropterin oxidized relative to tyrosine formation, with mutation of His285 having the greatest effect on the coupling of the two partial reactions. The H285Q enzyme had the highest activity as tetrahydropterin oxidase at 20% the wild-type value. All of the mutations greatly decreased the affinity for iron, with mutation of Glu330 the most deleterious. The results complement previous results with tyrosine hydroxylase in establishing the plasticity of the individual iron ligands in this enzyme family.  相似文献   

16.
Phenylalanine hydroxylase converts phenylalanine to tyrosine utilizing molecular oxygen and tetrahydropterin as a cofactor, and belongs to the aromatic amino acid hydroxylases family. The catalytic domains of these enzymes are structurally similar. According to recent crystallographic studies, residue Tyr179 in Chromobacterium violaceum phenylalanine hydroxylase is located in the active site and its hydroxyl oxygen is 5.1 Å from the iron, where it has been suggested to play a role in positioning the pterin cofactor. To determine the catalytic role of this residue, the point mutants Y179F and Y179A of phenylalanine hydroxylase were prepared and characterized. Both mutants displayed comparable stability and metal binding to the native enzyme, as determined by their melting temperatures in the presence and absence of iron. The catalytic activity (kcat) of the Y179F and Y179A proteins was lower than wild-type phenylalanine hydroxylase by an order of magnitude, suggesting that the hydroxyl group of Tyr179 plays a role in the rate-determining step in catalysis. The KM values for different tetrahydropterin cofactors and phenylalanine were decreased by a factor of 3–4 in the Y179F mutant. However, the KM values for different pterin cofactors were slightly higher in the Y179A mutant than those measured for the wild-type enzyme, and, more significantly, the KM value for phenylalanine was increased by 10-fold in the Y179A mutant. By the criterion of kcat/KPhe, the Y179F and Y179A mutants display 10% and 1%, respectively, of the activity of wild-type phenylalanine hydroxylase. These results are consistent with Tyr179 having a pronounced role in binding phenylalanine but a secondary effect in the formation of the hydroxylating species. In conjunction with recent crystallographic analyses of a ternary complex of phenylalanine hydroxylase, the reported findings establish that Tyr179 is essential in maintaining the catalytic integrity and phenylalanine binding of the enzyme via indirect interactions with the substrate, phenylalanine. A model that accounts for the role of Tyr179 in binding phenylalanine is proposed.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations AAAHs aromatic amino acid hydroxylases - BH2 7,8-dihydro-l-biopterin - BH4 (6R)-5,6,7,8-tetrahydro-l-biopterin - CD circular dichroism - cPAH Chromobacterium violaceum phenylalanine hydroxylase - DMPH4 6,7-dimethyl-5,6,7,8-tetrahydropterin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - ES-MS electrospray ionization mass spectrometry - hPAH human phenylalanine hydroxylase - ICP-AE inductively coupled plasma atomic emission - 6-MPH4 6-methyl-5,6,7,8-tetrahydropterin - PAH phenylalanine hydroxylase - PH4 tetrahydropterin - PKU phenylketonuria - RDS rate-determining step - TH tyrosine hydroxylase - THA 3-(2-thienyl)-l-alanine - TPH tryptophan hydroxylase - wt wild-type  相似文献   

17.
Pavon JA  Fitzpatrick PF 《Biochemistry》2006,45(36):11030-11037
Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-(2)H]-, [3,5-(2)H(2)]-, and (2)H(5)-phenylalanine as substrates. All (D)k(cat) values are normal with Delta117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12-1.41. In contrast, for Delta117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the (D)k(cat) value with [4-(2)H]-phenylalanine is 0.92 but is normal with [3,5-(2)H(2)]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Delta117PheH V379D shows a similar inverse isotope effect with [4-(2)H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-(2)H]-and [3,5(2)H(2)]-phenylalanine, are identical for Delta117PheH and Delta117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the (D)k(cat) value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight ( approximately 34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With (2)H(5)-indole-tryptophan as a substrate for Delta117PheH, the (D)k(cat) value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the (D)k(cat) values are within error of those for Delta117PheH V379D. Overall, these results are consistent with the aromatic amino acid hydroxylases all sharing the same chemical mechanism, but with the isotope effect for hydroxylation by PheH being masked by tautomerization of an enedione intermediate to tyrosine.  相似文献   

18.
The uncoupled portion of the partially uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase can be described by the same model as we have recently derived for the fully uncoupled reaction (Davis, M.D. and Kaufman, S. (1989) J. Biol. Chem.264, 8585–8596). Although essentially no hydrogen peroxide is formed during the fully coupled oxidation of tetrahydrobiopterin or 6-methyltetrahydropterin by phenylalanine hydroxylase when phenylalanine is the amino acid substrate, significant amounts of hydrogen peroxide are formed during the partially uncoupled oxidation of 6-methyltetrahydropterin whenpara-fluorophenylalanine orpara-chlorophenylalanine are used in place of phenylalanine. Similarly, during the partially uncoupled oxidation of the unsubstituted pterin, tetrahydropterin, even in the presence of phenylalanine, hydrogen peroxide formation is detected. The 4a-carbinolamine tetrahydropterin intermediate has been observed during the fully uncoupled tyrosine-dependent oxidations of tetrahydropterin and 6-methyltetrahydropterin by lysolecithin-activated phenylalanine hydroxylase, suggesting that this species is also a common intermediate for uncoupled oxidations by this enzyme.Abbreviations BH4 6-[dihydroxypropyl-(L-erythro)-5,6,7,8-tetrahydropterin (tetrahydrobiopterin) - 6MPH4 6-methyl-5,6,7,8-tetrahydropterin - PH4 5,6,7,8-tetrahydropterin - BH3OH 4a-hydroxytetrahydropterin (4a-carbinolamine) - qBH2 quinonoid dihydrobiopterin - q6MPH2 quinonoid dihydro-6-methylpterin - qPH2 quinoid dihydropterin - PAH phenylalanine hydroxylase - DHPR dihydropteridine reductase - PHS phenylalanine hydroxylase stimulating enzyme which is 4a-carbinolamine dehydratase - SOD superoxide dismutase - HPLC high performance liquid chromatography - R.T. retention time Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

19.
Moran GR  Phillips RS  Fitzpatrick PF 《Biochemistry》1999,38(49):16283-16289
Tryptophan hydroxylase is a pterin-dependent amino acid hydroxylase that catalyzes the incorporation of one atom of molecular oxygen into tryptophan to form 5-hydroxytryptophan. The substrate specificity and hydroxylation regiospecificity of tryptophan hydroxylase have been investigated using tryptophan analogues that have methyl substituents or nitrogens incorporated into the indole ring. The products of the reactions show that the regiospecificity of tryptophan hydroxylase is stringent. Hydroxylation does not occur at the 4 or 6 carbon in response to changes in substrate topology or atomic charge. 5-Hydroxymethyltryptophan and 5-hydroxy-4-methyltryptophan are the products from 5-methyltryptophan. These products establish that the hydroxylating intermediate is sufficiently potent to hydroxylate benzylic carbons and that the direction of the NIH shift in tryptophan hydroxylase is from carbon 5 to carbon 4. The effects on the V/K values for the amino acids indicate that the enzyme is most sensitive to changes at position 5 of the indole ring. The V(max) values for amino acid hydroxylation differ at most by a factor of 3 from that observed for tryptophan, while the efficiencies of hydroxylation with respect to tetrahydropterin consumption vary 6-fold, consistent with oxygen transfer to the amino acid being partially or fully rate limiting in productive catalysis.  相似文献   

20.
PH8 monoclonal antibody has previously been shown to react with all three aromatic amino acid hydroxylases, being particularly useful for immunohistochemical staining of brain tissue [Haan, Jennings, Cuello, Nakata, Chow, Kushinsky, Brittingham & Cotton (1987) Brain Res. 426, 19-27]. Western-blot analysis of liver extracts showed that PH8 reacted with phenylalanine hydroxylase from a wide range of vertebrate species. The epitope for antibody PH8 has been localized to the human phenylalanine hydroxylase sequence between amino acid residues 139 and 155. This highly conserved region of the aromatic amino acid hydroxylases has 11 out of 17 amino acids identical in phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号