首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
采用微管吮吸技术测定大鼠肝癌细胞的黏弹性;研究了秋水仙素、细胞松弛素D以及两者混合作用后对于肝癌细胞黏弹性的影响。结果表明:用CD处理癌细胞后发现癌细胞的弹性系数K1明显下降。与对照组相比:微丝骨架被CD抑制后,在加入Col后肝癌细胞的弹性系数K1显著降低;而微管骨架被col抑制后,在加入CD后肝癌细胞的弹性系数K1、K2和μ无明显变化。提示在微管骨架系统完整的情况下,微丝对肝癌细胞的黏弹性系数的的影响起主要作用。而微管骨架系统受到破坏后,微丝需借助于微管网络的作用来影响细胞的黏弹性。本研究对揭示癌细胞中骨架系统之间的交互作用对于细胞黏弹性的影响提高实验依据。  相似文献   

2.
水孔蛋白的抑制剂HgCl2可明显抑制壳梭孢菌素(FC)和微丝骨架的解聚剂细胞松弛素D(CD)对蚕豆保卫细胞原生质体膨胀的诱导作用,而对微丝骨架的稳定剂鬼笔环肽(phalloidin)的抑制作用影响不明显。这表明水孔蛋白可能介导了FC和微丝骨架对气孔运动的调节。  相似文献   

3.
采用激光共聚焦显微术研究微管微丝交联因子(MACF1)与成骨样细胞(MD63及MC3T3)微丝/微管骨架、黏着斑之间的相互关系.结果表明,MACF1不连续地分布于微管纤维上,与微丝骨架部分共定位于胞质中,在很多的成骨细胞中可见MACF1分布于骨架相关的粘着斑处:细胞松弛素B影响了MACF1在成骨细胞中的分布,并有使其向细胞核周围及核内转位的趋势.秋水仙素对MACF1的分布无明显的影响.转染了siRNA—MACFl的MG.63细胞微丝骨架纤维分布不连续、微管骨架纤维分布紊乱.这些结果提示MACF1不仅起交联微丝及微管细胞骨架的作用.而且还可稳定细胞骨架:成骨细胞MACF1的分布更依赖于微丝骨架的完整性.  相似文献   

4.
模拟微重力诱导的细胞微丝变化影响COL1A1启动子活性   总被引:1,自引:0,他引:1  
Dai ZQ  Li YH  Ding B  Yang F  Tan YJ  Nie JL  Yu JR 《生理学报》2006,58(1):53-57
细胞骨架系统是细胞内的重力感受系统。已知微重力导致的细胞形态、功能、信号传导等多种变化均与细胞骨架系统变化有关,但微重力对相关基因调控的影响知之甚少。本研究以构建的基因工程细胞株(EGFP-ROS)为对象,以回转器模拟微重力效应,利用增强型绿色荧光蛋白(enhanced green fluorescence protein,EGFP)荧光半定量和细胞微丝荧光染色分析技术,探讨回转模拟微重力条件下,细胞微丝系统对Ⅰ型胶原α1链基因(collagen type Ialpha chain 1 gene,COL1A1)启动子活性的影响。空间飞行和回转模拟微重力后,细胞微丝解聚、张力纤维减少,表明微重力可降低细胞微丝结构的有序性,诱导细胞骨架重排。适合剂量的细胞松弛素B处理EGFP-ROS细胞诱导微丝骨架解聚,同时导致COL1A1启动子活性增加,细胞荧光强度增强,并呈现剂量依赖性。因此,一定程度的细胞微丝系统破坏将导致COL1A1启动子活性的增强,证明细胞微丝骨架系统参与了微重力对COL1A1启动子活性调节,且在微重力信号传导中起重要作用。  相似文献   

5.
用异硫氰酸 鬼笔环肽 (FITC Ph)标记和共聚焦激光扫描显微镜 (CLSM )观察发现 ,以具有激发子活性的接种叶锈菌的小麦叶片的胞间洗脱液 (IWF)处理叶肉细胞原生质体一定时间后 ,抗病小麦品种洛夫林 10的原生质体内微丝骨架保持完整的网络状结构 ,而感病品种 5 389的大部分微丝骨架处于解聚状态。同时 ,抗病品种因IWF处理诱发的防卫反应———H2 O2 突发和HR反应的程度 (用原生质体活力下降的程度表示 )也大大高于感病品种。用细胞松弛素D(CD)预处理抗病品种原生质体可以明显抑制IWF处理诱发的H2 O2突发和HR反应 ,表明微丝骨架的状态可能与抗病性有密切的关系 ,完整的微丝骨架是H2 O2 突发和HR反应的一个重要条件。  相似文献   

6.
金黄滴虫细胞核微丝系统的初步观察   总被引:2,自引:0,他引:2  
金黄滴虫细胞核内经常存在着许多直径约为7nm的微丝。这些徽丝大多组合成走向不定的徽丝束,微丝束交织而成遍布核内的网架。核被下面微丝束较多,它们的存在常使核被外凸而成隆脊。核内微丝与核内结构如核仁、染色质等似乎都是相连的。有些微丝横跨核被,一端位于核内,另一端位于核周腔中,并靠近叶绿体。核周腔和内质网腔中也存在着微丝和另一种纤维,印管状纤维。用细胞松弛素B处理后,细胞核、核周腔和内质网腔中的微丝均消失,细胞核的形态也发生变化,似乎微丝网架有支持细胞核的作用。核内微丝可能是在内质网中组装,然后经核周腔进入核内的。  相似文献   

7.
目的:探讨不同应变对骨髓间充质干细胞系细胞骨架形态的影响。方法:实验分为六组,Ⅰ组(静态培养)、Ⅱ组(静态培养 细胞松驰素B)、Ⅲ组(10%应变12h)、Ⅳ组(10%应变12h 细胞松驰素B)、Ⅴ组(10%应变24h)、Ⅵ组(10%应变24h 细胞松驰素B)。分别对其施加10%0.5Hz的周期性应变,采用激光共聚焦显微镜技术和考马斯亮蓝染色方法对小鼠骨髓间充质干细胞系(D1细胞)细胞骨架进行形态观察、细胞F-肌动蛋白表达定量分析。结果:细胞受到不同周期性应变后,细胞的排列方向发生改变,细胞内的F-肌动蛋白排列同细胞的方向一致,随着拉伸时间的延长,F-肌动蛋白发生部分的断裂,F-肌动蛋白的荧光强度同静态组相比明显减弱(P<0.01);当加入细胞松驰素B后,细胞内F-肌动蛋白结构发生改变,在力的作用下,细胞内微丝断裂明显,随着拉伸时间的延长,微丝断裂更为加剧,F-肌动蛋白的荧光强度同静态组相比显著减弱(P<0.01)。结论:不同周期性应变对细胞微丝结构产生一定的影响,微丝在细胞感应力的响应中起重要作用。  相似文献   

8.
秋水仙素和长春花碱对肝癌细胞粘弹性的影响   总被引:8,自引:3,他引:5  
采用微管吸吮技术测定了正常肝细胞和肝癌细胞的粘弹特性,以三元素标准线性固体模型拟合实验结果,进一步研究秋水仙素和长春花碱处理后肝细胞和肝癌细胞粘弹性系数的变化。结果表明,肝癌细胞的弹性系数较之肝细胞的相应值增高,在秋水仙素和长春花碱作用下肝细胞和肝癌细胞的粘弹特性呈现不同的效应方式和强度。上述结果可能反映了两种细胞微管结构和机能状态的差异,癌细胞粘弹性的改变可能影响到浸润和转移特性以及癌细胞与其微观力学环境的相互作用。  相似文献   

9.
螅状独缩虫口区微纤维结构的研究   总被引:1,自引:1,他引:0  
常规电镜观察显示螅状独缩虫口部单毛基索(HK)、第一(P1)和第二咽膜(P2)旁各有一片微纤维结构。经一步抽提后,这些微纤维结构仍存在。三步抽提显示它们是由直径12nm左右的类中间纤维构成的网格结构,细胞松弛素B不能使其解体。HK和P1旁的微纤维结构在口围唇处即已形成,随着向胞口延伸,微纤维结构逐渐变宽,并形成典型的网格结构。  相似文献   

10.
本文采用微丝抑制剂——细胞松弛素E对大鼠生精细胞发育的影响作了形态学观察,特别对支持细胞骨架复合体的作用进行了较为详细的研究。结果表明睾丸内注射0.1ml,1000μmol/L~2000μmol/L,细胞松弛素E,6-14小时后,光镜下可见曲细精管上皮排列疏松,组合紊乱,有的生精上皮基底部出现双核和三核的圆形细胞和多核巨精子细胞,管腔内出现未成熟的精子;在第ⅤⅢ~Ⅸ期曲细精管上皮中,有许多第8、第9期的精子细胞顶体不指向基底方向,属定向不正的精子。电镜下,实验组动物可见一些面向第8-18期精子细胞顶体的支持细胞骨架复合体出现不同程度的缺如,有的断裂成小段;有的破坏仅发生在顶体上方;有的几乎全部丢失,并有类管球复合体的形成。另外,在高渗液处理下,可见精子细胞顶体和支持细胞间的间隙扩大。最后对微丝在精子发育中的作用进行了讨论。  相似文献   

11.
Summary Changes in the actin filament and microtubule cytoskeleton were examined during heat- and cytochalasin D-induced embryogenesis in microspores ofBrassica napus cv. Topas by rhodamine phalloidin and immunofluorescence labelling respectively. The nucleus was displaced from its peripheral to a more central position in the cell, and perinuclear actin microfilaments and microtubules extended onto the cytoplasm. Heat treatment induced the formation of a preprophase band of microtubules in microspores; preprophase bands are not associated with the first pollen mitosis. Actin filament association with the preprophase band was not observed. The orientation and position of the mitotic spindle were altered, and it was surrounded with randomly oriented microfilaments. The phragmoplast contained microfilaments and microtubules, as in pollen mitosis I, but it assumed a more central position. Cytoskeletal reorganisation also occurred in microspores subjected to a short cytochalasin D treatment, in the absence of a heat treatment. Cytochalasin D treatment of microspores resulted in dislocated mitotic spindles, disrupted phragmoplasts, and symmetric divisions and led to embryogenesis, confirming that a normal actin cytoskeleton has a role in preventing the induction of embryogenesis.Abbreviations CD cytochalasin D - MF actin microfilament - MT microtubule - PPB preprophase band  相似文献   

12.
Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.  相似文献   

13.
Modulation of the synthesis and secretion of extracellular matrix proteins and matrix-degrading metalloproteases by rabbit synovial fibroblasts is an important model system for studying the control of tissue-specific gene expression. Induction of collagenase expression is correlated with changes in cell shape and actin filament distribution, but the role of the cellular cytoskeleton in the sustained synthesis and secretion of metalloproteases has not been closely examined. When cells were allowed to respread after rounding by trypsin or cytochalasin, two known metalloprotease inducers, reformation of stress fibers was observed within 2 h in the presence of serum. In the absence of serum, trypsin-treated cells did not respread substantially, even after 24 h in culture. In contrast, cytochalasin-treated cells recovered almost as rapidly in the absence as in the presence of serum, showing reformation of well-formed microfilament bundles within 30 min of drug removal, especially at the spreading cell edges. High resolution electron-microscopic views of detergent-extracted cytoskeletons confirmed the rapid rebundling of peripheral microfilaments. Acrylamide-treated cells fell between these two extremes, spreading slowly in the absence of serum, but almost as rapidly as cytochalasin-treated cells in its presence. Reestablishment of normal intermediate filament distribution generally lagged slightly behind actin for all treatments, and intermediate filaments always appeared to spread back into the cellular cytoplasm within the confines of the reforming peripheral microfilament bundles. No obvious interaction between these two cytoskeletal elements was observed after any treatment, and no specific role for intermediate filaments in modulating gene expression in these cells is suggested by these results. The serum dependence displayed after trypsin or acrylamide treatment may be due to the disturbances in fibronectin synthesis observed in these cells and is consistent with evidence that both induction and sustained expression of matrix-degrading metalloprotease may involve signals transduced through plasma membrane matrix receptors (integrins).  相似文献   

14.
Filaggrin is an intermediate filament (IF)-associated protein that aggregates keratin IFs in vitro and is thought to perform a similar function during the terminal differentiation of epidermal keratinocytes. To further explore the role of filaggrin in the cytoskeletal rearrangement that accompanies epidermal differentiation, we generated keratinocyte cell lines that express human filaggrin using a tetracycline-inducible promoter system. Filaggrin expression resulted in reduced keratinocyte proliferation and caused an alteration in cell cycle distribution consistent with a post-G1 phase arrest. Keratin filament distribution was disrupted in filaggrin-expressing lines, while the organization of actin microfilaments and microtubules was more mildly affected. Evidence for direct interaction of filaggrin and keratin IFs was seen by overlay assays of GFP-filaggrin with keratin proteins in vitro and by filamentous filaggrin distribution in cells with low levels of expression. Cells expressing moderate to high levels of filaggrin showed a rounded cell morphology, loss of cell-cell adhesion, and compacted cytoplasm. There was also partial or complete loss of the desmosomal proteins desmoplakin, plakoglobin, and desmogleins from cell-cell borders, while the distribution of the adherens junction protein E-cadherin was not affected. No alterations in keratin cytoskeleton, desmosomal protein distribution, or cell shape were observed in control cell lines expressing beta-galactosidase. Filaggrin altered the cell shape and disrupted the actin filament distribution in IF-deficient SW13 cells, demonstrating that filaggrin can affect cell morphology independent of the presence of a cytoplasmic IF network. These studies demonstrate that filaggrin, in addition to its known effects on IF organization, can affect the distribution of other cytoskeletal elements including actin microfilaments, which can occur in the absence of a cytoplasmic IF network. Further, filaggrin can disrupt the distribution of desmosome proteins, suggesting an additional role(s) for this protein in the cytoskeletal and desmosomal reorganization that occurs at the granular to cornified cell transition during terminal differentiation of epidermal keratinocytes.  相似文献   

15.
All intermediate filament (IF) proteins share a highly conserved sequence motif at the COOH-terminal end of their rod domains. We have studied the influence of a 20-residue peptide, representing the consensus motif on filament formation and stability. Addition of the peptide at a 10-20-fold molar excess over keratins K8 plus K18 had a severe effect on subsequent IF assembly. Filaments displayed a rough surface and variable diameters with a substantial amount present in unravelled form. At higher peptide concentration (50-100-fold molar excess), IF formation was completely inhibited and instead only loose aggregates of "globular" particles were formed. The peptide also influenced performed keratin IF in a dose-dependent manner. While a three-fold molar excess was sufficient to cause partial fragmentation of IF, a 50-fold molar excess caused complete disassembly within 5 min. Loosely associated protofibrils, short needlelike IF fragments, and aggregates of globular particles were detected. The motif peptide also caused the disassembly of filaments formed by desmin, a type III IF protein. Peptide concentrations and incubation times required for complete disassembly were somewhat higher than for the filaments containing K8 plus K18. A 50-fold molar excess was sufficient to cause complete disassembly within 1 h. Peptides unrelated in sequence to the motif did not interfere with filament formation or stability even when present for more than 12 h at a 100-fold molar excess. The results suggest that the motif sequence normally binds to a specific acceptor site for which the motif peptide can successfully compete. Taken together with current models of IF structure the results indicate that normal binding of the motif sequence to its acceptor must play an essential role in IF formation, possibly by directing the proper alignment of neighboring tetramers or protofilaments. Finally we show that in vitro formed IF are much more sensitive and dynamic strutures than previously thought.  相似文献   

16.
Small heat shock proteins (sHSPs) act as chaperone, but also in protecting the different cytoskeletal components. Recent results suggest that αB-crystallin, a member of sHSPs family, might regulate actin filament dynamics, stabilize them in a phosphorylation dependent manner, and protect the integrity of intermediate filaments (IF) against extracellular stress. We demonstrate that vinblastin and cytochalasin D, which respectively disorganize microtubules and actin microfilaments, trigger the activation of the p38/MAPKAP2 kinase pathway and lead to the specific αB-crystallin phosphorylation at serine 59. Upstream of p38, we found that RhoK, PKC and PKA are selectively involved in the activation of p38 and phosphorylation of αB-crystallin, depending on the cytoskeletal network disorganized. Moreover, we demonstrate that chronic perturbations of IF network result in the same activation of p38 MAPK and αB-crystallin phosphorylation, as with severe disorganization of other cytoskeletal networks. Finally, we also show that Ser 59 phosphorylated αB-crystallin colocalizes with cytoskeletal components. Thus, disturbance of cytoskeleton leads by converging signaling pathways to the phosphorylation of αB-crystallin, which probably acts as a protective effector of the cytoskeleton.  相似文献   

17.
Native intermediate filament (IF) preparations from the baby hamster kidney fibroblastic cell line (BHK-21) contain a number of minor polypeptides in addition to the IF structural subunit proteins desmin, a 54,000-mol-wt protein, and vimentin, a 55,000-mol-wt protein. A monoclonal antibody was produced that reached exclusively with a high molecular weight (300,000) protein representative of these minor proteins. Immunological methods and comparative peptide mapping techniques demonstrated that the 300,000-mol-wt species was biochemically distinct from the 54,000- and 55,000-mol-wt proteins. Double-label immunofluorescence observations on spread BHK cells using this monoclonal antibody and a rabbit polyclonal antibody directed against the 54,000- and 55,000-mol-wt proteins showed that the 300,000-mol-wt species co-distributed with IF in a fibrous pattern. In cells treated with colchicine or those in the early stages of spreading, double-labeling with these antibodies revealed the co-existence of the respective antigens in the juxtanuclear cap of IF that is characteristic of cells in these physiological states. After colchicine removal, or in the late stages of cell spreading, the 300,00-mol-wt species and the IF subunits redistributed to their normal, highly coincident cytoplasmic patterns. Ultrastructural localization by the immunogold technique using the monoclonal antibody supported the light microscopic findings in that the 300,000-mol-wt species was associated with IF in the several physiological and morphological cell states investigated. The gold particle pattern was less intimately associated with IF than that defined by anti-54/55 and was one of non-uniform distribution along IF, being clustered primarily at points of proximity between IF, where an amorphous, proteinaceous material was often the labeled element. Occasionally, "bridges" of label were seen extending outward from such clusters on IF. Gold particles were infrequently bound to microtubules, microfilaments, or other cellular organelles, and when so, IF were usually contiguous. During multiple cycles of in vitro disassembly/assembly of the IF from native preparations, the 300,000-mol-wt protein remained in the fraction containing the 54,000- and 55,000-mol-wt structural subunits, whether the latter were in the soluble state or pelleted as formed filaments. In keeping with the nomenclature developed for the microtubule-associated proteins (MAPs), the acronym IFAP-300K (intermediate filament associated protein) is proposed for this molecule.  相似文献   

18.
Post-translational modifications are important functional determinants for intermediate filament (IF) proteins. Phosphorylation of IF proteins regulates filament organization, solubility, and cell-protective functions. Most known IF protein phosphorylation sites are serines localized in the variable “head” and “tail” domain regions. By contrast, little is known about site-specific tyrosine phosphorylation or its implications on IF protein function. We used available proteomic data from large scale studies to narrow down potential phospho-tyrosine sites on the simple epithelial IF protein keratin 8 (K8). Validation of the predicted sites using a pan-phosphotyrosine and a site-specific antibody, which we generated, revealed that the highly conserved Tyr-267 in the K8 “rod” domain was basally phosphorylated. The charge at this site was critically important, as demonstrated by altered filament organization of site-directed mutants, Y267F and Y267D, the latter exhibiting significantly diminished solubility. Pharmacological inhibition of the protein-tyrosine phosphatase PTP1B increased K8 Tyr-267 phosphorylation, decreased solubility, and increased K8 filament bundling, whereas PTP1B overexpression had the opposite effects. Furthermore, there was significant co-localization between K8 and a “substrate-trapping” mutant of PTP1B (D181A). Because K8 Tyr-267 is conserved in many IFs (QYE motif), we tested the effect of the paralogous Tyr in glial fibrillary acidic protein (GFAP), which is mutated in Alexander disease (Y242D). Similar to K8, Y242D GFAP exhibited highly irregular filament organization and diminished solubility. Our results implicate the rod domain QYE motif tyrosine as an important determinant of IF assembly and solubility properties that can be dynamically modulated by phosphorylation.  相似文献   

19.
Action of cytochalasin D on cytoskeletal networks   总被引:53,自引:32,他引:21       下载免费PDF全文
Extraction of SC-1 cells (African green monkey kidney) with the detergent Triton X-100 in combination with stereo high-voltage electron microscopy of whole mount preparations has been used as an approach to determine the mode of action of cytochalasin D on cells. The cytoskeleton of extracted BSC-1 cells consists of substrate-associated filament bundles (stress fibers) and a highly cross-linked network of four major filament types extending throughout the cell body; 10-nm filaments, actin microfilaments, microtubules, and 2- to 3-nm filaments. Actin filaments and 2- to 3-nm filaments form numerous end- to-side contacts with other cytoskeletal filaments. Cytochalasin D treatment severely disrupts network organization, increases the number of actin filament ends, and leads to the formation of filamentous aggregates or foci composed mainly of actin filaments. Metabolic inhibitors prevent filament redistribution, foci formation, and cell arborization, but not disorganization of the three-dimensional filament network. In cells first extracted and then treated with cytochalasin D, network organization is disrupted, and the number of free filament ends is increased. Supernates of preparations treated in this way contain both short actin filaments and network fragments (i.e., actin filaments in end-to-side contact with other actin filaments). It is proposed that the dramatic effects of cytochalasin D on cells result from both a direct interaction of the drug with the actin filament component of cytoskeletal networks and a secondary cellular response. The former leads to an immediate disruption of the ordered cytoskeletal network that appears to involve breaking of actin filaments, rather than inhibition of actin filament-filament interactions (i.e., disruption of end-to-side contacts). The latter engages network fragments in an energy-dependent (contractile) event that leads to the formation of filament foci.  相似文献   

20.
Molecular architecture of intermediate filaments   总被引:17,自引:0,他引:17  
Together with microtubules and actin microfilaments, approximately 11 nm wide intermediate filaments (IFs) constitute the integrated, dynamic filament network present in the cytoplasm of metazoan cells. This network is critically involved in division, motility and other cellular processes. While the structures of microtubules and microfilaments are known in atomic detail, IF architecture is presently much less understood. The elementary 'building block' of IFs is a highly elongated, rod-like dimer based on an alpha-helical coiled-coil structure. Assembly of cytoplasmic IF proteins, such as vimentin, begins with a lateral association of dimers into tetramers and gradually into the so-called unit-length filaments (ULFs). Subsequently ULFs start to anneal longitudinally, ultimately yielding mature IFs after a compaction step. For nuclear lamins, however, assembly starts with a head-to-tail association of dimers. Recently, X-ray crystallographic data were obtained for several fragments of the vimentin dimer. Based on the dimer structure, molecular models of the tetramer and the entire filament are now a possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号