首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在植物组织培养研究中常采用腺嘌呤的衍生物(如 KT,6-BA,玉米素,2ip 等)作为细胞分裂素(CTK)与生长素配合进行植物离体组织的分化与脱分化。本研究采用四川大学化学系周明跃先生合成的4PU-30[N-(4-吡啶基)N′-苯基脲]在猕猴桃组织培养中促使分化的作用并与腺嘌呤类化合物作一比较,简要结果如下:  相似文献   

2.
采用分光光度计法对虫草菌丝体中腺苷类组分的提取方法进行研究,采用薄层层析法和高效液相色谱法对虫草菌丝体中的腺嘌呤、腺苷、虫草菌素、N6-(2-羟乙基)腺苷等4种物质进行定性和定量分析。结果表明,虫草菌丝体中腺苷类组分的提取方法采用蒸馏水超声波提取30min效果较好,所测5种虫草菌株都能产腺苷和腺嘌呤,在蛹草拟青霉菌株中含有虫草菌素,在粉被玛利亚霉和蝉拟青霉菌株中含有N6-(2-羟乙基)腺苷,同时发现N6-(2-羟乙基)腺苷的累积与培养时间有一定关系。  相似文献   

3.
从分离和收藏的14株具有能把腺嘌呤分段合成到三磷酸腺嘌呤核苷酸的产氨短杆菌中筛选出发酵产生辅酶A的菌种Brevibacterium ammoniagenes 1.844和730704(未经鉴定)。其中Bre.ammoniagenes 1.844用N-甲基-N′-硝基-N-亚硝基胍诱变,从三十二株变异株中选出具有高产性能的1.844-68菌株。通过发酵条件的研究,它在适当的发  相似文献   

4.
mRNA上能发生100多种化学修饰,其中N~6-腺嘌呤(m~6A)是mRNA修饰中最广泛的表观修饰方式之一。在细胞分化、胚胎发育和应激等生物学过程中,特定的mRNA会发生包括N~1-腺嘌呤甲基化、N~5-胞嘧啶甲基化、假尿嘧啶以及N`6-腺嘌呤甲基化等修饰,它们共同形成了mRNA转录后调控的表观修饰转录组,实现对mRNA翻译成蛋白质过程的精确时空调控,特别是m~6A修饰能通过调控mRNA的代谢和翻译等进而调控细胞的一系列生物学过程。文中主要综述mRNA的表观修饰类型和特点,特别是m~6A修饰参与调控mRNA和细胞生物学功能的最新研究进展,并展望了将来m~6A表观修饰的研究重点和方向。  相似文献   

5.
RNA在众多细胞工作机制中具有调控和信息分子双重功能的作用。因此,RNA修饰的研究是生物学的一个新兴领域。据最新的RNA修饰数据库RNAMDS中一共收集并记录了109种RNA的修饰形式,其中RNA甲基化修饰占80%,尤其是6-甲基腺嘌呤(N6-methyladenosine,m6A),是发生在腺嘌呤A第六位N原子上的甲基化,也是真核生物RNA内部序列中最常见的一种转录后修饰形式。最新研究发现:肥胖基因FTO表达的相关蛋白可以脱掉6-甲基腺嘌呤上的甲基,而且研究表明,该甲基化过程是可逆的。激活或敲除6-甲基腺嘌呤甲基转移酶基因会引起生物体重要的表型变化,本文将通过体外模拟生理环境条件下的去甲化底物反应条件,共同孵育FTO野生型和FTO突变型的基因表达的蛋白酶分别与RNA甲基化底物作用的实验,再利用质谱与高效液的技术对多种甲基化形式予以进一步探索,来发现FTO表达蛋白对单链RNA上的6-甲基腺嘌呤具有去甲基化功能。同时,经过体内试验的验证,在FTO基因敲低细胞中m RNA中的6-甲基腺嘌呤水平升高;相反,在FTO基因过表达细胞中m RNA中的6-甲基腺嘌呤水平降低;而6-甲基腺嘌呤甲基化酶METTL3的表达均未受到影响。  相似文献   

6.
DNA、RNA的甲基化作为重要的表观遗传标记,在真核生物多个细胞过程中发挥作用。DNA中的N6-甲基腺嘌呤(N6-methyladenine in DNA, 6mA)和RNA中的N6-甲基腺嘌呤(N6-methyladenine in RNA, m6A)均为来自腺嘌呤第6位的甲基化修饰,在合成和功能上有相似性也有区别。6mA或m6A的修饰缺陷影响植物胚胎发育、干细胞分化、组织器官发生及应激反应等。meRIPseq等技术的发展为全组甲基化位点鉴定提供了基础,未来将更加注重于功能研究。该文对近年来植物6mA或m6A甲基化位点的全组鉴定、合成、调控及成员功能研究进行回顾和比较,并展望未来的研究方向。  相似文献   

7.
葡糖胺-6-磷酸合酶催化氨基己糖代谢和细胞壁合成的第一步反应,即利用D-果糖-6-磷酸和L-谷氨酰胺生成葡糖胺-6-磷酸和谷氨酸,该途径的终产物N-乙酰葡糖胺是细菌和真菌细胞壁构建的基本成分.真菌、昆虫和甲壳类动物的几丁质,哺乳动物的糖蛋白和黏多糖都是通过N-乙酰葡塘胺最终合成的.葡糖胺-6-磷酸合酶是一个胰岛素调节酶,介导II型糖尿病的胰岛素抵抗.因此葡糖胺-6-磷酸合酶被认为是开发抗细菌、抗真菌、治疗II型糖尿病及其相关并发症等疾病的药物的分子靶标.  相似文献   

8.
1激素类 国产及进口6-BA、6.KT、CPA、BPA、ABA、IAA、IBA、IPA、NAA、TIBA、BNOA、GA3、2,4-D、CPPU、异戊烯基腺嘌呤(2iP)、苯基噻二:唑基脲(TDZ)、腺嘌呤、腺嘌呤硫酸盐、毒莠定、反-玉米素、(±)Jasmonicacid、Dicamba等。可办理国外Sigma、Fluka、Aldrich、Amrcsco、Sanland、Merck、Gibco/brl、Fisher等公司产品专项订货,到货快,价格合理。  相似文献   

9.
虽然昆虫杆状病毒表达系统在蛋白表达领域得到了广泛的应用, 但由于不能表达复杂的末端唾液酸化的N-糖链, 使得该系统在生物制药行业的应用受到了很大的限制。通过比较哺乳动物细胞和昆虫细胞内糖基化途径可知, 其起始步骤一致, 之后再发生分化, 主要表现为3方面, 即昆虫细胞内缺乏哺乳动物细胞所具备的N-乙酰葡萄糖氨转移酶II、 半乳糖基转移酶/N-乙酰氨基半乳糖转移酶、α-2,3-唾液酸转移酶和α-2,6-唾液酸转移酶等延长N-糖链的糖基转移酶; 另外, 昆虫细胞内具有能够特异性地将蛋白质末端的N-乙酰氨基葡萄糖残基从GlcNAcMan3GlcNAc(±α3/6-Fuc)GlcNAc上切除的N-乙酰氨基葡萄糖苷酶及核心α-1,3-岩藻糖基转移酶。本文从上述异同出发, 综述了克服昆虫细胞内不能表达人源化糖蛋白这一缺陷所进行的N-糖基化途径的改造研究--主要集中在昆虫细胞内GlcNAcase的抑制和昆虫细胞内GnT2, GalT/ GalNAcT, ST3及ST6等基因的导入等方面, 结果表明经改造的昆虫细胞可表达人源化糖蛋白, 这将极大地拓宽昆虫杆状病毒表达系统的应用领域。本文还探讨了选择特殊细胞系及特殊培养条件以在昆虫细胞内表达唾液酸化蛋白的可行性。  相似文献   

10.
缺硫培养6天的水稻幼苗,其叶片和根中的硝酸还原酶(NR)活性明显下降。用1pPm 的6-苄氨基腺嘌呤(6-BA)处理培养了10天的水稻幼苗根系,24小时后缺硫培养的水稻幼苗叶片和根系的 NR 活性升高,加硫培养的水稻幼苗叶片和根中的 NR 活性下降。用~(35)S示踪发现,6-BA 可降低加硫幼苗对~(35)S 的吸收和转化,但促进缺硫幼苗对~(35)S 的转化。  相似文献   

11.
目前发现的RNA表观遗传修饰存在多种方式,如N~6-甲基腺嘌呤(N~6-methyladenosine, m~6A)、N~1-甲基腺嘌呤(N1-methyladenosine, m~1A)、5-甲基胞嘧啶(5-methylcytidine, m5C)和假尿嘧啶核苷(pseudouridine,PD)等。m~6A是最常见的一种修饰,它是由甲基转移酶和去甲基化酶以及结合蛋白所催化的一种动态可逆的修饰方式,具有重要的调控功能,参与多种细胞进程和疾病的病理过程。最近5年,随着RNA检测技术的发展,m~6A修饰的生物学功能探索已成为RNA领域的前沿热点,该文拟对m~6A甲基化修饰的相关蛋白、生物学功能等方面进行简要概述。  相似文献   

12.
RNA上存在多种修饰形式,如6-甲基腺嘌呤(m~6A)、5-甲基胞嘧啶(m5C)、1-甲基腺嘌呤(m1A)和假尿嘧啶等。m~6A是真核生物m RNA中丰度最高的甲基化修饰形式,也是目前研究最为透彻的一种RNA修饰类型。随着m~6A修饰检测和测序技术的发展以及单碱基分辨率等新兴技术的兴起,多种m~6A修饰相关的调控蛋白被鉴定,其调控的生物学功能也得到了更深入的解析。该文主要介绍了m~6A甲基化修饰的调控蛋白、分布特征及规律、检测技术、生物学功能及其与肿瘤的关联,并对目前该研究领域面临的主要机遇与挑战进行了讨论。  相似文献   

13.
不同氮源对球形棕囊藻生长的影响   总被引:1,自引:0,他引:1  
采用实验室培养的方法比较了6种不同氮源-硝态氮、尿素、甘氨酸、精氨酸、谷氨酸、腺嘌呤对典型赤潮藻球形棕囊藻(Phaeocystis globosa)生长的影响。结果表明,6种氮源均能不同程度地促进球形棕囊藻的生长,但比生长速率和光合作用效率具有显著差异性。将球形棕囊藻在不同浓度氮源下的最大比生长速率分别拟合Monod方程,得出球形棕囊藻在硝态氮、尿素、甘氨酸、精氨酸、谷氨酸和腺嘌呤等6种氮源下的最大比生长率分别为1.05,1.17,0.82,0.87,1.09,0.90d-1,相应的半饱和常数分别为9.132,23.758,85.519,7.104,23.94,10.959μmol/L。其中,高氮浓度(8820μmol/L)下腺嘌呤对球型棕囊藻的生长具有显著抑制作用。相比较而言,球形棕囊藻对甘氨酸的亲和力最高。当硝态氮、尿素、甘氨酸、精氨酸、谷氨酸和腺嘌呤的浓度分别为8820,882,882,8820,882,0.441μmol/L时,球形棕囊藻的最大光合效率(Fv/Fm)分别为0.619,0.620,0.579,0.595,0.648,0.667。由此可见,氮源对球形棕囊藻的生长和光合作用具有显著影响;球形棕囊藻能够利用多种无机和有机氮源,与其它仅能利用无机氮源的浮游植物相比,更具有竞争优势。  相似文献   

14.
激动素、6-苯甲基氨基嘌呤以及其他的7种嘌呤、4种嘧啶、3种咪唑与其衍生物,此外还有包括赤霉素等14种植物激素,共计30种药剂,处理水稻叶来观察以上30种药剂对水稻叶綠素分解的影响。试验结果认为激动素、6-苯甲基氨基嘌呤(6-benzylaminopurine)、腺嘌呤、鸟嘌呤、苯并咪唑(benzimidazole)等可  相似文献   

15.
Spiramine N-6属粉花秀线菊植物中提取分离的二十碳二萜生物碱。本实验采用Born,Shen和Hamburger等方法分别观察了spiramine N-6在体外和体内对兔血小板聚集功能的影响。应用荧光分光光度法测定其对血小板5-羟色胺释放反应的作用,同时评价spiramine N-6对激活的血小板与中性粒细胞之间粘附反应的影响。结果表明:spiramine N-6在体外选择性抑制血小板活化因子(PAF)诱导的血小板聚集,并呈量效关系,其IC50=26μmol/L,对花生四烯酸(AA)或腺苷二磷酸(ADP)引起的血小板聚集无明显作用;spiramine N-6静注后明显抑制PAF、AA和ADP诱导的血小板聚集。Spiramine N-6呈浓度依赖性减少AA和PAF引起血小板5-羟色胺的释放,其IC50分别为64.7和33.5μmol/L。Spiramine N-6明显阻抑激活的血小板与中性粒细胞间的粘附率,其IC50为78.6μmol/L。结果提示spiramine N-6作为二十碳二萜生物碱具有较强的抗血小板和阻抑血小板一中性粒细胞相互作用的生物活性。  相似文献   

16.
添加次黄嘌呤或腺嘌呤提高肌苷产量   总被引:1,自引:0,他引:1  
肌苷生产菌No.226具有将次黄嘌呤转变为肌苷的能力,添加次黄嘌呤有利于肌苷的积累。腺嘌呤缺陷型的肌苷生产菌株,在培养液中腺嘌呤的浓度对肌苷积累有显著影响。我们采用中国科学院上海生物化学研究所等单位选育的枯草芽孢杆菌7171-9-1菌株,进行舔加次黄嘌呤或腺嘌呤与酵母粉试验,现报道如下。  相似文献   

17.
核糖体RNA拓扑学与RNA N-糖苷酶研究进展(上)   总被引:4,自引:0,他引:4  
核糖体RNA拓扑学的研究对阐明核糖体RNA(rRNA)在蛋白质生物合成中的作用具有重要的意义.RNA N-糖苷酶是一类核糖体失活蛋白.它只水解rRNA特定位置上一个腺苷酸的糖苷键,释放一个腺嘌呤碱基,使核糖体失活.Ricin A链是研究得最早和最详细的RNA N-糖苷酶,迄今已发现有二十五种核糖体失活蛋白具有RNA N-糖苷酶活性.RNA N-糖苷酶作用于28S rRNA的α-sarcin结构域,改变核糖体的构象而使其失活.  相似文献   

18.
N6-甲基腺嘌呤(N~6-methyladenosine, m~6A)修饰是一种在真核生物中普遍存在的RNA修饰方式,在mRNA转运、稳定、翻译等过程中具有重要作用。m~6A修饰在病毒复制周期中扮演不同的角色,病毒的复制和宿主对病毒的免疫反应都受到m~6A甲基化的影响。本文总结了近年来关于m6A修饰方面的分子作用机制及其对病毒复制以及宿主免疫反应的影响相关研究,以期为病毒生命周期中的表观遗传调控研究提供一定的参考。  相似文献   

19.
以[8-14C]标记的腺嘌呤和黄嘌呤为底物,对两种可以合成少量咖啡碱和茶叶碱的木荷属和柃木属植物(Schima mertensiana,Eurya japonica)叶片的嘌呤代谢进行了检测研究。发现木荷属和柃木属植物中嘌呤代谢相似,14C标记的腺嘌呤可以整合到嘌呤核苷酸、RNA、酰脲(包括尿囊素和尿囊酸)、二氧化碳中。经过24 h培养,在叶片吸收的放射能中,仅有6%~7%用于甲基黄嘌呤类化合物的合成(3-甲基黄嘌呤、7-甲基黄嘌呤核苷、7-甲基黄嘌呤、茶叶碱)。和其他植物一样,绝大多数14C标记的黄嘌呤整合到嘌呤的分解代谢物中(二氧化碳和酰脲),少量的放射能分布在3-甲基黄嘌呤及茶叶碱中。根据结果可以推断木荷属和柃木属植物具有N-甲基转移酶活性,可以用来合成咖啡碱和茶叶碱,相对于茶树而言,活性不高。综上,本文对木荷属和柃木属植物的嘌呤代谢以及嘌呤碱合成进行了研究。  相似文献   

20.
N6-甲基腺嘌呤(N6-methyladenosine,m6 A)是真核生物RNA最常见的一种转录后修饰,主要影响信使RNA(messenger RNA,mRNA)的可变剪接、翻译效率和稳定性等.研究发现,RNA去甲基化酶AlkB同源物5(human Alk B homolog 5,ALKBH5)是影响m6 A修饰水平...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号