首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
研究雷氏黄萤Luciola leii Fu and Ballantyne幼虫的呼吸系统及其呼吸行为。结果表明:雷氏黄萤幼虫的呼吸系统中只有气管无气囊。前胸、中胸和后胸均分布有气门,无气管鳃,腹部1~8节分布有气门和气管鳃,气门腔基部和气管鳃基部相连,呈"√"状,气管鳃内气管与气门气管相连通。雷氏黄萤幼虫的呼吸行为分为3种:利用胸部气门呼吸、腹部气门呼吸和气管鳃呼吸,其中以腹部气门呼吸为主。  相似文献   

2.
星齿蛉属Protohermes隶属于广翅目Megaloptera齿蛉科Corydalidae,是一类原始的完全变态昆虫,幼虫水生,常作为指示生物用于水质监测。本文对湘西峒河流域两种星齿蛉幼虫进行了分子鉴定和体表呼吸结构观测。结果表明两种星齿蛉幼虫COⅠ基因序列分别与花边星齿蛉Protohermes costalis和炎黄星齿蛉Protohermes xanthodes同源性较高;遗传距离分析和系统发育分析进一步证实两种星齿蛉幼虫分别属于花边星齿蛉和炎黄星齿蛉,分子鉴定结果与成虫形态鉴定结果一致。花边星齿蛉和炎黄星齿蛉幼虫体表呼吸结构气门、毛簇、气管鳃和臀足侧突均与气管相连,毛簇是主要的水下呼吸结构。本研究结果为峒河流域星齿蛉昆虫资源的保护和开发利用提供了科学数据。  相似文献   

3.
通过显微解剖,结合透射电镜和扫描电镜,观察比较了条背萤Luciola substriata幼虫两个不同发育阶段呼吸系统的差异。结果表明:1~2龄幼虫的呼吸系统中只有气管无气囊,3~6龄幼虫的呼吸系统中气管和气囊并存。1~2龄幼虫的尾气门和3~6龄幼虫的腹部侧气门及尾气门结构没有差异。透射电镜观察提示条背萤1~2龄幼虫体壁上的毛状物为气管鳃。  相似文献   

4.
本文以普通齿蛉Neoneuromus ignobilis Navás,1932和单斑巨齿蛉Acanthacorydalis unimaculata Yang et Yang,1986为例,描述和比较了广翅目齿蛉科齿蛉属和巨齿蛉属的卵块及1龄幼虫形态特征.结果显示普通齿蛉与单斑巨齿蛉的卵块和1龄幼虫在形态上有着较大差异:普通齿蛉卵块约为单斑巨齿蛉卵块的3/4;普通齿蛉卵粒约为单斑巨齿蛉卵粒的2/3,卵粒都呈圆柱形,差异不大;普通齿蛉外层白色覆盖物厚度是单斑巨齿蛉的2~3倍.普通齿蛉卵块为单个附着在芦苇叶上,形状有4种类型,分别为椭圆形、螺形、卵圆形、圆形,在所有样本中其占比分别依次为47.1%、9.8%、17.6%和25.5%;单斑巨齿蛉卵块多为数个相连附着在桥底,卵壳薄且最外层卵粒向外翘起,使其表面如突起均匀地分布在卵壳表面.普通齿蛉1龄幼虫腹部背面白色的线状裸露区较稳定,且8对气管鳃靠近末端都有褐色和黄色的斑纹,而单斑巨齿蛉1龄幼虫腹部背面呈深褐色,腹部背面裸露区和颜色分布不稳定,气管鳃无花斑;两种1龄幼虫腹部两侧均都无毛簇.这些数据资料不仅丰富了广翅目昆虫的相关知识,而且为其产业化应用提供了参考.  相似文献   

5.
姜碌  花保祯 《昆虫学报》2016,(9):1004-1012
【目的】蝎蛉科(Panorpidae)是长翅目(Mecoptera)最大的科,是重要的生态指示昆虫。然而,由于对环境条件要求苛刻,饲养困难,其幼期研究很不充分。【方法】本研究通过人工饲养成虫获得了长蝎蛉Panorpa macrostyla Hua的卵、幼虫和蛹等全部虫态,运用光学显微镜和扫描电子显微技术观察了其超微形态,并简要记载了其生物学特性。【结果】长蝎蛉每年发生1代,成虫发生于6月末至8月初。卵椭球形,卵壳表面覆盖一层隆起的网状结构。幼虫蠋型,具3对分4节的胸足和8对不分节的腹足;头壳高度骨化,具1对由26个小眼组成的复眼和1对3节的触角,口器咀嚼式;腹部第1-9节背面具有成对的背毛突,第10节仅有1根背毛突,腹部末端具有一个可伸缩的吸盘;呼吸系统为周气门式,具1对前胸气门和8对腹气门。幼虫共4个龄期,以预蛹期在土室内越冬。蛹为强颚离蛹,外形接近成虫,雄蛹腹部末端膨大。【结论】基于幼虫形态特征,长蝎蛉明显区别于新蝎蛉属Neopanorpa、华蝎蛉属Sinopanorpa、双角蝎蛉属Dicerapanorpa以及单角蝎蛉属Cerapanorpa幼虫。然而,长蝎蛉幼虫头部刚毛L2和SO2,腹部末节刚毛D2,SD1和SD2端部均膨大呈棒状,与蝎蛉属Panorpa其他种类区别明显,表明长蝎蛉的属级地位需要进一步研究。  相似文献   

6.
水居昆虫为了获得氧气发展出适应水中生活的各种各样巧妙的办法来辅助它们原有的呼吸体系,即气管呼吸体系。以下是最常见的3种方法。1 鳃蜉蝣,石蚕蛾的幼虫仍然保留了陆地上昆虫具有的气管,不过气管连接着鳃,它们用鳃来过滤溶解在水里的大量氧气。这些鳃不同于其它水生动物的鳃,是由昆虫体壁一部分特薄突出而形成的。这些鳃的形状往往象稀疏的羊齿叶子,从腹部向外延伸。石蚕蛾则是从头部和胸部向外延伸。借身体外壁伸缩之力吸水排水。这些鳃的作用只是通过鳃的表面把氧气送入气管。2 通气管许多生活在水中的昆虫,并没有鳃,而是…  相似文献   

7.
条背萤幼虫水生适应性形态与游泳行为研究   总被引:4,自引:2,他引:2  
研究了条背萤Luciolasubstriata幼虫的形态特征及其对游泳行为的适应。形态及扫描电镜观察发现,条背萤幼虫存在二态现象。1~2龄幼虫虫体扁平,多毛。有7对呼吸鳃,分别位于腹部第1~7节。3~6龄幼虫虫体扁平呈船形,无呼吸鳃,靠气管呼吸。二者均具有扁平桨状的足、燕尾状尾节及位于尾节末端的圆柱形粘附器官。条背萤幼虫游动时身体腹面朝上,呈仰泳姿态,足向后划水。3~6龄幼虫仰泳时足共有8种摆动姿势。幼虫仰泳时足摆动1个周期所需时间为(0.611±0.16)s。腹部末端可上下左右摆动,当幼虫向前游动时,尾部上下摆动1个周期所需时间为(1.795±0.44)s。幼虫的游泳速度为(0.85±0.16)mh。仰泳中的幼虫改变方向时,头部和尾部同时向身体的一侧弯曲,当头部与尾部呈近90°时,幼虫用力将尾部伸直,此时水产生一个反作用力继续推动幼虫转向,幼虫转向的范围为0~90°。条背萤2种类型幼虫呼吸系统的不同决定着幼虫外部形态的差异及游泳行为的不同,而导致这种呼吸系统、形态及运动行为不同的原因很可能是条背萤对环境的适应性进化。  相似文献   

8.
于力 《昆虫学报》1997,40(3):300-302
原石蛾属(RhyacophilaPict.)种类较多[1~3],目前我国已报道过95种成虫(1995)[4],但对幼虫报道很少。原石蛾属的幼虫是不筑巢、自由生活在石质河床及清冷流水体中的种类。该属幼虫下颚须第2节比其它节长;中胸和后胸多无鳃,腹部缺密集的簇状鳃、或有稀疏的鳃或单枝的鳃、或完全无鳃;腹部节间常明显缢缩;第9腹节背板形成骨化的臀板;末龄幼虫体长不超过30mm[5,6]。1987年至1993年作者在长白山区(海拨370~2100m)的多条河流中采获原石蛾属幼虫6种,其中4种为中国新记录。现记述长白山原石蛾属6种幼虫于种检索表中。长白山原石蛾…  相似文献   

9.
为了促进广翅目Megaloptera幼虫和蛹的分类鉴定,本文运用幼虫分子数据和成虫形态特征对2种斑鱼蛉属Neochauliodes的幼虫和蛹进行鉴定,并对幼虫和蛹的外部形态进行了详细描述。研究结果表明:1)双齿斑鱼蛉N.bicuspidatus和越南斑鱼蛉N.tonkinensis幼虫和蛹的COⅠ基因序列长度分别为808 bp和820 bp, GenBank登录号为MW560981和MW560982。2)双齿斑鱼蛉和越南斑鱼蛉的末龄幼虫形态区别为:前者头部和前胸背板几乎全黑且无斑纹,后者则有明显复杂的斑纹;前者腹部腹面的"T"型斑纹两部分分离,后者的相连且大小和形状不稳定;前者每一腹节腹面都有相对稳定的"∵"形大黄斑点,后者腹面斑纹存在2种类型。3)蛹的形态区别如下:前者通体体色较深且随时间变化大,后者在临近羽化时只有翅芽颜色加深近黑色;前者腹部第9节背面和腹面长有密集纤长的刚毛,后者光滑无毛。这些差异性状对于2种斑鱼蛉幼虫和蛹的鉴别具有一定的参考价值,但幼虫的花纹和体色变异很大,无法作为稳定的鉴别特征;而蛹在形态鉴定时要考虑体色随时间变化的情况。  相似文献   

10.
报道了球角跳科在中国的1新纪录属"米氏球角跳属",并描述了1新种,新种命名为鞍山米氏球角跳Mitchellania anshanensis sp.nov.鞍山米氏球角跳与描述自西伯利亚的M.subhorrida Babenko,1994相似,两者的主要区别在于:新种体长仅0.8mm,腹部第5节背面p1毛之间体表颗粒数量为17~20,触角第4节腹面有20~25个弯曲且顶端膨大的短小感觉毛,爪部生有1内齿,但无侧齿,胸部第2和第3节背面感觉毛短小精巧,腹部第1~3节背面感觉毛与普通刚毛长度相同;M.subhorrida体长达到1.5mm,腹部第5节背面p1毛之间体表颗粒数量为8~10,触角第4节腹面弯曲且顶端膨大的短小感觉毛数量范围为30~35个,爪部生有1内齿和1侧齿,胸部第2节、腹部第1~3节背面感觉毛与普通刚毛长度相同,胸部第3节和腹部第2节背面感觉毛短小粗壮.模式标本保存在中国科学院上海植物生理生态研究所.  相似文献   

11.
The 8th abdominal segment of Heliothis virescens (Fabricius) larvae contains aerating trachea and tracheole tufts that end in the hemocoel of the 8th segment, unlike the tracheae that invade tissues in other segments. These tracheal tufts from the 8th abdominal segment extend to the tokus region, which along with the telson cavity is known to act as a “lung” for hemocytes in Calpodes ethlius and a few other lepidopteran larvae. The goal of this research was to study the effects of these tracheal tufts in the 8th abdominal segment on parasitoid development inside the host larvae, H. virescens. The first objective was to determine if the eggs of the parasitoid, Toxoneuron nigriceps, are predominantly located among the tracheal tufts of the 8th abdominal segment compared to other body cavity regions irrespective of their oviposition site or the position of the host larvae. The results showed that several hours after oviposition most of the eggs are found in the 8th abdominal segment irrespective of the oviposition site or the position of the host larvae. The second objective was to study the effect of varying oxygen concentrations in vitro on various developmental stages of the egg. The results showed that decreasing oxygen concentrations adversely affects the parasitoid egg development in vitro. A third objective was to determine the oxygen concentration in 8th abdominal segment of the host larvae and compare it to other regions of the body using an oxygen sensor placed in vivo. The results suggested relatively high concentration of oxygen in the 8th abdominal segment compared to other regions of the host, thus supporting our hypothesis that the increased oxygen level in the 8th abdominal segment is important to the development of the parasitoid eggs.  相似文献   

12.
Since insect blood usually lacks oxygen-carrying pigments it has always been assumed that respiratory needs are met by diffusion in the gas-filled lumen of their tracheal systems. Outside air enters the tracheal system through segmentally arranged spiracles, diffuses along tubes of cuticle secreted by tracheal epithelia and then to tissues through tracheoles, thin walled cuticle tubes that penetrate between cells. The only recognized exceptions have been blood cells (hemocytes), which are not tracheated because they float in the hemolymph. In caterpillars, anoxia has an effect on the structure of the hemocytes and causes them to be released from tissues and to accumulate on thin walled tracheal tufts near the 8th (last) pair of abdominal spiracles. Residence in the tufts restores normal structure. Hemocytes also adhere to thin-walled tracheae in the tokus compartment at the tip of the abdomen. The specialized tracheal system of the 8th segment and tokus may therefore be a lung for hemocytes, a novel concept in insect physiology. Thus, although as a rule insect tracheae go to tissues, this work shows that hemocytes go to tracheae.  相似文献   

13.
李怡萍  刘惠霞  袁锋  黄晓锋  袁向群 《昆虫学报》2009,52(12):1298-1306
加拿大昆虫学家Locke提出鳞翅目幼虫体内有一个适应血细胞进行气体交换的肺结构。本文以Locke的研究为依据, 运用电镜及其他化学方法, 观察和研究了粘虫Leucania separata及棉大卷叶螟Sylepta derogata幼虫的肺结构和功能。结果表明: 肺存在于第8腹节的气管处, 该气管分支细短而丰富, 形成气管簇。亚甲基蓝标记血液发现, 血流方向为由前向侧后方向, 流经第8腹节和臀腔, 最后流回心脏。第8腹节气管簇的管壁比其他各节都薄, 且管壁内膜具有更多适合运动的细管, 这有利于气体的通透。正常情况下, 气管簇处有各种各样的血细胞聚集, 当缺氧胁迫时有大量的血细胞从组织中释放, 通过变形而紧贴气管簇, 以利于气体的交换。这些特征都与高等动物的肺功能相似, 因而判断此结构存在肺的功能。  相似文献   

14.
The formation of the alimentary canal, nervous system, and of other ectodermal derivatives in the embryo of the primitive moth, Neomicropteryx nipponensis Issiki, is described. The stomodaeum is formed from an invagination in the medioposterior portion of the protocephalon. The proctodaeum arises as an extension of the amnioproctodaeal cavity. The midgut epithelium orginates from anterior and posterior rudiments in blind ends of the stomodaeum and proctodaeum. The decondary dorsal organ is formed in developing midgut. The development of the brain is typical of insects. The ventral nerve cord originates in large part from neuroblasts arising in 3 gnathal, 3 thoracic, and 11 abdominal segments. Intrasegmental median cord cells probably differentiate into both ganglion cells and glial elements of the ventral nerve cord; intersegmental cells appear not to participate in the formation of the nervous system. The stomatogastric nervous system develops from three evaginations in the dorsal wall of the stomodaeum, and consists of the frontal, hypocerebral, and ventricular ganglia, the recurrent nerve, and corpora cardiaca. Five stemmata arise from the epidermis on each side of the head. Five pairs of ectodermal invaginations are formed in the cephalognathal region to produce the tentorium, mandibular apodemes, corpora allata, and silk glands. Prothoracic glands orginate in the prothorax. Mesothoracic spiracles shift anteriorly to the prothorax during development. Oenocytes arise in the first seven abdominal segments. Invaginated pleuropodia are formed in the first abdominal segment.  相似文献   

15.
斜脉蝠蛾幼虫分类特征研究   总被引:4,自引:0,他引:4  
余虹  高祖Xun 《昆虫学报》1993,36(4):465-468
本文研究报道了冬虫夏草主要寄主之一斜脉蝠蛾Hipialus oblifurcus Chu et Wang幼虫头、胸、腹各部分的形态特征、颜色、毛序及各龄幼虫的头宽和体长,可作为鉴别种类的依据。  相似文献   

16.
The musculature of the fourth to eighth abdominal segments is typically composed of twenty pairs of segmental muscles associated with the body wall. In the first to third and ninth and tenth segments certain modifications to the basic plan occur in association with the abdominal-thoracic junction, the respiratory apparatus and the anal appendages. In some segments there are also paired muscles associated with the alimentary canal. Two large transverse muscles are present in the abdomen. There are eight abdominal ganglia, the first seven of which each give rise to three pairs of lateral nerves, the eighth to five pairs. In addition there are ten median abdominal nerves. The innervation fields of the various nerves are described. The first three pairs of lateral nerves of the last ganglion are homologous with the lateral nerves of the other abdominal ganglia; the fourth pair innervates most of segment nine; and the fifth pair innervates the remainder of segment nine, segment ten and the anal appendages. Certain of the abdominal muscles are innervated by branches from two different nerve roots. In segments six and seven the anterior point of attachment of the longitudinal stretch receptors is normally different from that in the other abdominal segments. This is discussed in the light of the types of movement which involve the abdomen and it seems apparent that these receptors are affected not only by swimming and abdominal flexion, as are the other longitudinal stretch receptors, but also by respiratory movements. Two distinct types of epidermal sensilla are present on the abdomen, spines and hairs. The former are the more numerous on the body, the latter on the anal appendages.  相似文献   

17.
18.
Activity patterns of motoneurones which innervate spiracular muscles in two blaberid cockroaches, Blaberus discoidalis and Gromphadorhina portentosa, have been monitored during two homologous behaviour patterns: respiratory and non-respiratory tracheal ventilation. Based upon the activity of spiracular motoneurones during these two activities, the abdominal spiracles have been divided into three functional groups: vestigial, respiratory and non-respiratory. In Blaberus discoidalis spiracle 3 is vestigial, spiracles 6, 7, 8 and 10 are respiratory, and spiracles 4, 5 and 9 are non-respiratory. In Gromphadorhina portentosa spiracles 3 and 10 are vestigial, spiracle 4 is non-respiratory and spiracles 5–9 are respiratory.Respiratory spiracles in both species are characterized by activity patterns of their motoneurones during respiratory tracheal ventilation: low frequency firing at irregular intervals during the respiratory pause and a higher frequency burst synchronous with the expiratory abdominal compression. Non-respiratory spiracles are characterized by complete inactivity of their opener motoneurones during respiratory tracheal ventilation. These motoneurones are activated by mechanical stimulation in both species, which simultaneously suppresses activity in respiratory opener motoneurones. In Blaberus discoidalis, there are no differences between activity patterns of respiratory and non-respiratory closer motoneurones. In Gromphadorhina portentosa, not only do respiratory and non-respiratory closer motoneurones have different activity patterns, but the activity pattern of respiratory closer motoneurones is different during respiratory and non-respiratory tracheal ventilation. The functional implications of these several spiracular motoneurone activity patterns are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号