首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
峥嵘  王琚钢  白淑兰 《菌物学报》2016,35(11):1365-1374
为探究外生菌根真菌对油松磷吸收作用的分子机理,以油松优良乡土外生菌根真菌——浅黄根须腹菌Rhizopogon luteolus的磷酸盐转运蛋白基因(RlPT)为对象,在缺陷酵母MB192中进行了异源表达研究。结果显示,该cDNA编码的蛋白质能够互补高亲和力磷酸盐转运蛋白pho84的功能;由不同pH条件下生长试验可知,该蛋白是一个与质子相偶联的运输蛋白;RlPT测算的Km值为57.90μmol/L磷酸盐;通过酸性磷酸酶的活性检测,进一步验证该基因是具有高亲和力磷酸盐转运蛋白功能的基因。激光共聚焦显微观察表明,该蛋白在低磷条件下多定位于酵母细胞膜上发挥其功能。  相似文献   

2.
高亲和磷转运蛋白负责植物在低磷条件下吸收和转运磷酸盐,对植物的生长发育至关重要。将水稻中关键的高亲和磷转运蛋白基因OsPT8(A high affinity phosphate transporter gene OsPht1;8,以下简称OsPT8)通过农杆菌介导的方法转入烟草云烟87,以转基因烟草和野生型(云烟87)为材料,设置正常供磷(1 mmol/L Pi)和低磷(0.1 mmol/L Pi)两个处理的沙培试验,检测烟株地上部和地下部的生物量、全磷及有效磷的含量,分析烟草高亲和磷转运蛋白家族基因(NtPT1和NtPT2)的表达差异。结果显示,低磷条件下,OsPT8过量表达转基因株系生物量均显著高于野生型;在正常供磷和低磷条件下,OsPT8过量表达烟草株系全磷含量和有效磷含量均显著高于野生型,这表明高亲和磷转运蛋白基因OsPT8可以提高转基因烟草的耐低磷能力。RT-PCR和Q-PCR结果显示,转基因株系显著提高了烟草高亲和磷转运蛋白基因NtPT1和NtPT2的表达量,表明OsPT8对烟草磷吸收和转运的影响是通过OsPT8基因和烟草NtPT1、NtPT2基因等一个复杂的过程起作用的。  相似文献   

3.
恶性疟裂殖子表面蛋白1合成基因在毕赤酵母中的表达   总被引:9,自引:0,他引:9  
恶性疟原虫裂殖子表面蛋白1是当今疟疾疫苗主要的候选抗原。由于天然MSP1基因AT含量异常高(为74%),使得克隆全长天然基因无法实现。本文已全合成了msp1基因(4940bp),解决了该天然基因在异源系统中不稳定的问题。为制备大量msp1重组蛋白进行疫苗有效性试验,本研究建立了msp1基因在毕赤酵母中的表达,将合成的msp1基因克隆到毕赤酵母胞内表达载体pPIC3.5,构建了重组质粒pPIC3.5/msp1,用电击转化毕赤酵母得到重组转化子,经PCR证实msp1基因已整合于毕赤酵母染色体中。含有重组表达质粒的毕赤酵母菌经甲醇诱导后表达出全长msp1重组蛋白。表达产物能与识别MSP1分子二硫键依赖构象表位的特异性单抗发生很强的反应,表明msp1重组蛋白至少在该表位构象上与天然蛋白一致。从毕赤酵母中分离得到大量msp1为开展该蛋白的结构与功能,特别是测定其疟疾保护性免疫提供可能。  相似文献   

4.
来源于酸热脂环酸杆菌的嗜酸性α-淀粉酶的表达研究   总被引:6,自引:0,他引:6  
从嗜酸耐热的酸热脂环酸杆菌Alicyclobacillusacidocaldarius中克隆到α_淀粉酶的基因 (amy) ,该基因全长 390 3bp ,编码130 1个氨基酸 ,理论分子量约 140kD。将基因amy分别克隆到大肠杆菌E .coli表达载体pET-2.2b(+)和毕赤酵母P .pastoris表达载体pPIC9α ,并在大肠杆菌和毕赤酵母中得到了表达 ,表达产物具有淀粉酶的活性。对酵母中表达的酶蛋白AMY进行了纯化 ,并初步研究了它的酶学性质 ,它的作用最适pH3.2 ,在pH 2.5~4.6范围内 ,酶活性保留 50%以上 ,它的最适温度65℃ ,在 70℃下处理 30min ,酶活性维持50%以上 ,基本保留了天然酶蛋白的耐热性和嗜酸性。位于基因amy内部 +1174~+3288bp的基因片段amy′全长 2115bp ,编码705个氨基酸 ,在E .coli表达后依然具有淀粉酶的活性。  相似文献   

5.
毕赤酵母的密码子用法分析   总被引:135,自引:5,他引:130  
通过分析Pichia pastoris的28个蛋白编码基因的同义密码子使用情况并计算该酵母的密码子用法,首次确定出P.pastoris的19个高表达优越密码子。这些结果经与已知的Saccharomyces cerevisiaeKluyveromyces lactis的密码子用法基本相似,但在氨基酸谷氨酸的密码子选择上截然相反,提示这可能属于P.pastoris所偏爱的密码子用法。  相似文献   

6.
利用PCR方法从水稻黄单胞细菌(Xanthomonas oryzae)两个致病变种(pv. oryzae和pv. oryzicola)的12个菌株中, 扩增出了编码诱导植物过敏反应蛋白激发子Harpin的3类hrfA (hypersensitive response functioning factor A)同源基因hrf1, hrf2hrf3. 同源性分析表明, 这些同源基因推测的编码产物均富含甘氨酸, 缺乏酪氨酸, 在序列的第45位附近的氨基酸都有一个半胱氨酸. HarpinXoo由来源于水稻白叶枯病菌的hrfA基因编码, 产物包括两类, 一类代表菌株为JxoⅢ, 其中GGG-GG基序的重复数为3个, 分子量为15.6 kD; 另一类代表菌株为Pxo112, 产物中GGG-GG基序的重复数为4个, 分子量为15.9 kD, 这两个基因分别命名为hrf1hrf3. HarpinXooc由来源于水稻条斑病细菌的hrfA基因编码, 代表菌株为RS105, 其中GGG-GG重复数为2个, 分子量为15.3 kD, 水稻黄单胞菌Harpin分子中的一个半胱氨酸残基是其特有的. 将这3类基因与已报道的hpa1xop1基因编码的氨基酸序列进行聚类分析, 结果可以将其分为4类, 来源于水稻黄单胞菌的HarpinXoo和HarpinXooc被分在相邻的两类中. 对3种产物进行比较研究结果, 在相同条件下3个代表菌株JxoⅢ, RS105和Pxo112的hrfA基因(hrf1, hrf2hrf3)表达蛋白的相对浓度分别为: 0.389, 0.530, 0.083 mg/mL. hrf1, hrf2hrf3在大肠杆菌(Bl21)中的表达产物(Harpins)在烟草上均能激发过敏反应和诱导抗病性, 其生物活性依次为Hrf2, Hrf1和Hrf3.  相似文献   

7.
植物对磷酸盐的吸收与利用主要依靠磷转运蛋白,其中PHT2家族编码的低亲和磷转运蛋白主要负责植物在正常供磷条件下磷酸盐的吸收、转运与再利用。为了探究低亲和磷转运蛋白基因NtPHT2;1在烟草转运磷酸盐中的作用和表达模式,本研究以普通烟草K326的cDNA为模板,克隆得到NtPHT2;1,对该基因进行生物信息学分析和蛋白质的亚细胞定位,并通过荧光定量PCR技术对该基因在低磷等非生物胁迫下的基因表达模式进行分析。结果表明:(1)NtPHT2;1基因的全长为1 764 bp,编码587个氨基酸。(2)亚细胞定位结果表明,NtPHT2;1蛋白定位于叶绿体上。(3)同源性比对发现,NtPHT2;1蛋白与辣椒CaPHT2;1蛋白的同源性最高达到91.00%。(4)启动子分析表明,NtPHT2;1启动子含有参与调控植物衰老、逆境胁迫相关的顺式作用元件。(5)组织表达模式分析表明,NtPHT2;1在叶片中的表达量最高,新叶中的表达量比老叶中的高;在低磷诱导条件下,该基因的表达量与正常条件相比差异不显著。(6)不同非生物胁迫下的表达模式表明,在盐胁迫和干旱胁迫下,该基因的表达量显著降低。研究认为,NtPHT2;1基因主要是负责烟株正常生长发育条件下磷酸盐的转运与利用。  相似文献   

8.
水稻Rac家族新成员osRACB基因的克隆及结构分析   总被引:2,自引:0,他引:2  
Rac基因是植物中惟一的一类分布广泛的信号GTP结合蛋白, 它在整个植物生长发育过程中起着极为重要的作用. 应用本实验室已有的水稻光周期育性转换相关基因osRACD为探针, 在低严谨杂交条件下, 筛选农垦58N-LD雌雄蕊形成期(第Ⅳ期)幼穗cDNA文库, 获得一水稻Rac家族新基因. 经同源性比较和序列分析显示, 该基因与玉米Rac家族成员RACB基因具有93%的核苷酸同源性, 且两者氨基酸序列长度相等, 仅存在一个氨基酸残基差异, 故命名新基因为osRACD. 进一步应用PCR技术, 以农垦58N基因组DNA为模板扩增得到长度为2930 bp的osRACB基因转录区核苷酸序列, 其结构包含7个外显子和6个内含子, 同时, 通过基因组文库筛选获得osRACB基因的启动区序列. Southern杂交分析表明osRACB基因同其他Rac基因相似, 是低拷贝基因. RT-PCR检测显示osRACB基因在水稻根、茎、叶中均有一定的表达, 但在茎中表达量最高. 此外, 还以人Rac1蛋白为模板, 利用InsightII软件包下的Homology, Discover等模块对osRACB蛋白进行了三级结构预测.  相似文献   

9.
利用SDS_PAGE检测了2份类大麦属(Crithopsisdelileana)材料的高分子量谷蛋白亚基组成,并对其中1份材料的x型亚基进行了克隆和测序。结果表明,2份材料具有完全相同的蛋白电泳图谱。在小麦的高分子量区域仅检测到一条蛋白质带,与小麦y型亚基的迁移率接近,但克隆测序表明其为x型高分子量谷蛋白亚基,其编码基因命名为KxKx基因编码区序列长度为2 0 5 2bp ,编码长度为6 6 1个氨基酸残基的蛋白质,其序列具有典型的x型高分子量谷蛋白亚基的特征。Kx基因能在原核表达系统内正确表达,其表达蛋白与来源于种子中的Kx亚基的迁移率完全一致。Kx亚基与小麦属A、B和D ,山羊草属C和U以及黑麦属R染色体组编码的高分子量谷蛋白亚基氨基酸序列非常相似,但在N和C保守区的氨基酸组成以及重复区长度上与它们存在明显差异。聚类分析可将Kx与Ax1聚类为平行的分支。由此可见,来源于C .delileanaKx基因为一新的x型高分子量谷蛋白亚基基因。  相似文献   

10.
水稻Osgrp-2基因的结构、表达特性和染色体定位   总被引:5,自引:1,他引:4  
富含甘氨酸的蛋白质(GRP)是植物细胞壁的一种重要结构蛋白, GRP基因的表达具有组织特异性, 受发育阶段和多种环境因素的调控, 因此GRP基因为植物基因的表达调控研究提供了一个良好的模式. 从水稻基因组文库中克隆了一个新的GRP基因Osgrp-2, 测定了其序列, 并通过5′RACE实验确定了该基因的转录起始位点, 从而界定了约2.4 kb的启动子序列. 还详细分析了Osgrp-2在水稻中的时空表达特性和损伤诱导表达特性. 最后, 将Osgrp-2定位于水稻的第10号染色体上.  相似文献   

11.
为了获得结核分枝杆菌ESAT 6蛋白在毕赤氏酵母中的高效表达 ,将人α-2a干扰素基因、结核分枝杆菌esat-6基因经PCR扩增并加上相应的酶切位点 ,两基因之间的DNA接头编码肠激酶识别的多肽 ,DNA经酶切连接插入分泌型载体pPIC9K ,将重组表达质粒pPIC9K-α2a-esat6用SalⅠ单酶切之后 ,电击转入PichiapastorisSMD1168中 ,采用G418梯度筛选获得高抗性转化子。以甲醇作为诱导物 ,发酵4d后取上清 ,进行SDS PAGE和Westernblot鉴定并分析表达产物的干扰素活性。结果表明 ,重组菌株成功地分泌表达了分子量大小约为 30kD的融合蛋白 ,表达产物不仅具有较高的干扰素活性 ,而且可以和结核病人血清发生特异性结合 ,为结核病的特异性诊断和结核病新型疫苗的研制打下了基础.  相似文献   

12.
嗜热毛壳菌Chaetomium thermophilum CT2是一种土壤腐生菌,可产生具有重要工业生产价值的纤维素酶类。RACE-PCR获得嗜热毛壳菌纤维二糖水解酶Ⅱ(CBHⅡ)的编码基因(cbh2)。DNA序列分析表明cbh2的开放阅读框由1428个碱基组成,编码476个氨基酸。推断的氨基酸序列包含一个典型真菌纤维素酶的糖结合域(CBD)、催化域(CD)以及二者之间富含脯氨酸和羟基氨基酸的连接桥。根据氨基酸序列推算该酶分子量为53kD,属于糖苷水解酶第六家族,具有该家族催化保守区的典型特征。PCR扩增cbh2的成熟蛋白编码基因,利用基因重组的方法构建可在毕赤酵母分泌表达系统中表达纤维二糖水解酶蛋白的重组表达载体,并转化毕赤酵母得到重组子。在毕赤酵母醇氧化酶AOX1基因启动子的作用下,重组蛋白得到高效表达,小规模发酵量达1.2 mg/mL。经硫酸铵沉淀、DEAESepharose Fast flow阴离子层析等步骤纯化了该重组表达蛋白。SDS-PAGE得到重组蛋白分子量为67kD,与从嗜热毛壳菌中纯化的该酶分子量一致。该重组纤维二糖水解酶作用的最适合温度50℃,最适pH4.0,在70℃的半衰期为30min,具有较好的热稳定性。  相似文献   

13.
水稻EPSP合酶第一内含子增强外源基因的表达   总被引:5,自引:0,他引:5  
分离并克隆了水稻5-烯醇丙酮莽草酸-3-磷酸合酶基因的第一内含子(EPI). 序列分析表明, EPI长704 bp, GC含量为36.2%. 为进一步研究EPI序列在转基因植物中对外源基因表达水平的影响, 将EPI序列插入CaMV35S启动子和报导基因β-葡糖醛酸酶(β-glucuronidase, GUS)基因(gus)之间. 采用基因枪法转化烟草叶片, gus基因瞬时表达表明, EPI序列的存在可以使GUS的表达水平提高. 利用农杆菌法转化烟草, 获得了gus基因稳定表达的植株. GUS活性检测表明EPI内含子的存在可以显著提高GUS基因的表达(P<0.01). Northern blot 分析表明, 在转录水平上gus基因在含EPI内含子的转基因植株中的表达高于不含EPI gus基因的表达, 并且成熟的gus mRNA中EPI被正确剪取掉了, 表明是一种非转译的内含子. GUS定量检测表明, EPI存在可以使GUS的平均表达水平提高3倍, 最高单株可提高6倍.  相似文献   

14.
为了定位青霉素G酰化酶的调节基因,从质粒Ppa6克隆了一系列青霉索G酰化酶基因(pac)的片段,将这些重组质粒转化E.coli D816,测定克隆片段对pac表达的影响。如果克隆片段含有完整的调节基因(pacR)。诱导剂不能使由高拷贝pacR表达的阻抑物失活,部分阻抑物结合pac操纵基困,阻碍RNA聚合酶对加pac的转录,因此pac的表达量降低。发酵结果表明,阻抑物可能是由pac结构基因内部的ORFⅡ编码的蛋白因子。  相似文献   

15.
棉花微管蛋白基因GhTub1在纤维细胞中的特异表达   总被引:1,自引:0,他引:1  
以陆地棉(Gossypium hirsutum )纤维发育前期和中期的胚珠及纤维细胞为材料构建cDNA文库, 通过ESTs分析获得了一个β-微管蛋白家族成员(GhTub1). 以该cDNA的3′-UTR为探针, 利用Northern杂交方法, 对GhTub1基因在棉花不同器官及棉纤维不同发育阶段的表达进行了分析, 发现该基因的表达具有棉纤维细胞特异性. 在纤维发育过程中, GhTub1转录产物的累积主要发生在纤维细胞延伸阶段, 在纤维延伸速度最快时达到高峰. 利用裂殖酵母系统, 对GhTub1的细胞内功能进行了初步分析, 发现该基因在酵母中过量表达能使其细胞显著伸长或分支. 这些实验结果暗示GhTub1基因可能在纤维细胞的极性延伸中具有功能.  相似文献   

16.
水稻bZIP蛋白REB结合Wx基因启动子中的GCN4基序   总被引:3,自引:0,他引:3  
在水稻Wx基因启动子中找到了一个由胚乳基序(EM)和GCN4基序组成的双元胚乳盒. 许多文献报道,种子贮存蛋白基因启动子中的胚乳盒与基因的种子专一性表达有关,一类bZIP家族的转录因子通过结合胚乳盒中的GCN4基序而调控相应基因在种子中专一性表达.本文证明了水稻Wx基因启动子的胚乳盒中的GCN4基序能被水稻未成熟种子中的核蛋白识别并结合.进一步采用PCR的方法克隆了水稻bZIP家族的转录因子——REB的部分cDNA,并在E.coli中表达了REB融合蛋白.凝胶滞后试验结果表明,除文献报道,REB能结合α-globulin启动子上的靶位点外,REB也能识别并结合水稻Wx基因启动子的GCN4基序.  相似文献   

17.
高效表达高比活植酸酶是进一步提高植酸酶发酵效价、降低植酸酶生产成本的一个有效途径。对源于Escherichia coli的高比活植酸酶基因appA,按照毕赤酵母(Pichia pastoris)密码子的偏爱进行了密码子优化改造。该改造后的基因appA-m按正确的阅读框架融合到毕赤酵母表达载体pPIC9上的α-因子信号肽编码序列3′端,通过电击转化得到重组转化子。对重组毕赤酵母的Southern blotting分析证实植酸酶基因已整合到酵母基因组中,并确定了整合基因的拷贝数。Northern blotting分析证实植酸酶基因得到了正常转录。SDS-PAGE分析和表达产物的研究表明,植酸酶得到了高效分泌表达,在5L发酵罐中植酸酶蛋白表达量达到2.5mg/mL发酵液, 酶活性(发酵效价)达到7.5×106IU/mL发酵液以上, 大大高于目前报道的各种植酸酶基因工程菌株的发酵效价。  相似文献   

18.
银新杨中与DRE元件结合的转录因子的克隆及鉴定分析   总被引:9,自引:0,他引:9  
DREB类转录因子特异地与DRE元件结合,在植物感受非生物逆境(干旱、高盐和低温)胁迫时,激活一系列逆境应答基因的表达。我们选用银新杨(Populus alba×P. alba var. pyramidalis)为材料,通过PCR和同源EST搜索的方法克隆得到了一个类DREB的基因,命名为PaDREB2。酵母单杂交实验表明,该基因编码的蛋白能特异地与DRE元件结合并激活下游报告基因的表达。用RT-PCR的方法研究了PaDREB2的表达模式,结果表明PaDREB2受低温、干旱和高盐的胁迫诱导。  相似文献   

19.
为获得高效表达外源蛋白的Pichiapastoris菌株而设计了重组质粒pPIC9K-vgbbxn ,其中透明颤菌血红蛋白基因vgb胞内表达以提高菌体的发酵密度 ,腈水解酶基因bxn分泌表达。转化GS115菌株后 ,通过PCR、SDS-PAGE检测证实两基因已经整合进酵母基因组且能高效表达 ,以及用准确的蛋白活性测定方法成功地检测到二者所表达的产物均具有正常的活性。摇瓶发酵实验证明 ,血红蛋白在贫氧条件下可明显促进酵母菌体生长和bxn基因分泌表达.  相似文献   

20.
从大豆中分离鉴定了一个单拷贝的cDNA克隆,该基因所编码的蛋白质富含脯氨酸,命名为SbPRP .序列分析表明它具有完整的编码框,编码一个具126个氨基酸的蛋白质,其中含有一个由25个氨基酸组成的信号肽.成熟蛋白SbPRP具有典型的双模块结构,包括富含脯氨酸结构域(17个氨基酸)和一个长的疏水的富含半胱氨酸的结构域(84个氨基酸). SbPRP的表达具有明显的器官特异性,即叶中大量表达而根中不表达.Northern杂交进一步表明,SbPRP不仅对水杨酸处理作出迅速应答,而且也可对接种大豆花叶病毒Sa株系作出应答,同时还对其他非生物胁迫如盐和干旱也有明显的应答作用,因此SbPRP基因可能是一个新的防卫基因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号