首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物源α-半乳糖苷酶的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了微生物源α-半乳糖苷酶的生理生化特性、合成调控机制的研究进展情况及其在食品、饲料、医药工业等领域的一些应用。Α-半乳糖苷酶均是糖蛋白,不同来源的α-半乳糖苷酶的作用基质特异性差别较大,作用基质特异性差别是由蛋白质部分N-末端氨基酸序列决定的。不同微生物来源的α-半乳糖苷酶其最佳作用条件、pH稳定性及耐热性差异较大。微生物α-半乳糖苷酶是一种诱导酶,其合成受多个基因的调控,高浓度的葡萄糖能抑制其合成。  相似文献   

2.
α-半乳糖苷酶在多种生物内广泛存在,微生物是目前α-半乳糖苷酶的主要来源。微生物α-半乳糖苷酶可按照底物特异性或序列同源性分类,在古菌、细菌和真菌中均存在,其性质与来源和家族有关,催化机理大多为构型保留机制,目前主要应用于食品与饲料工业,还可用于生物质降解和医药领域。展望了微生物α-半乳糖苷酶的研究趋势。本文对相关研究者具有一定的参考意义。  相似文献   

3.
α-半乳糖苷酶是一种有着巨大商业价值的工业酶制剂,在医药、食品和化工等行业有着广泛的应用。以来源于雪莲根部土壤的短状杆菌Brachybacterium sp.DB5为材料,从其基因组中扩增出一个α-半乳糖苷酶基因编码序列,经过测序及BLAST比对分析,证实该基因属于α-半乳糖苷酶。将其与p ET-30a(+)载体相连后在大肠杆菌中进行异源表达,经过诱导获得了此酶的胞外高效表达,粗酶液的活性为5.07 U/m L,经纯化后酶的活性达72.78 U/m L,酶学特性分析表明其最适p H为6.0,最适温度为40℃。此酶可用作动物饲料豆粕的添加剂,以提高饲料的利用率。  相似文献   

4.
从丝状真菌中筛选到一株产α-半乳糖苷酶的菌株F63,对该菌株进行了形态观察和18SrDNA序列分析,该菌株属于青霉属。采用硫酸铵沉淀、阴离子交换层析和分子筛层析等方法分离纯化了该菌株的一种α-半乳糖苷酶。经过聚丙烯酰胺凝胶电泳,此酶蛋白的分子量约为82kDa。该α-半乳糖苷酶反应的最适pH为5.0,最适温度为45℃。此α-半乳糖苷酶的热稳定性在40℃以下,pH稳定性为pH5.0-6.0。与已报道的α-半乳糖苷酶的活性都受到Ag 的强烈抑制不同的是,该α-半乳糖苷酶受Ag 的抑制作用不显著。以pNPG为底物的Km值为1.4mmol/L和Vmax=1.556mmol/L.min-1.mg-1。该酶可以有效降解蜜二糖、棉子糖和水苏糖,但不能降解末端含α-半乳糖苷键的多糖。通过利用质谱技术对纯化的α-半乳糖苷酶进行鉴定以及内肽的N端测序证明该蛋白为一种新的α-半乳糖苷酶。  相似文献   

5.
微生物源a—半乳糖苷酶的研究进展   总被引:2,自引:0,他引:2  
介绍了微生物源a-半乳糖苷酶的生理生化特性、合成调控机制的研究进展情况及其在食品、饲料、医药工业等领域的一些应用。a-半乳糖苷酶均是糖蛋白,不同来源的a-半乳糖苷酶的作用基质特异性差别较大,作用基质特异性差别是由蛋白质部分N-末端氨基酸序列决定的。不同微生物来源的a-半乳糖苷酶其最佳作用条件、pH稳定性及耐热性差异较大。微生物a-半乳糖苷酶是一种诱导酶,其合成受多个基因的调控,高浓度的葡萄糖能抑制其合成。  相似文献   

6.
目的:采用一种简单易行的纯化方法获得高纯度α-半乳糖苷酶单克隆抗体。方法:使用重组A蛋白偶联的琼脂糖凝胶捕获和纯化小鼠腹水中的α-半乳糖苷酶单克隆抗体。结果:获得了高纯度、高效价的α-半乳糖苷酶单克隆抗体。结论:应用重组A蛋白偶联的琼脂糖凝胶纯化α-半乳糖苷酶单克隆抗体是一种简单、有效的方法。  相似文献   

7.
目的:制备高效价、高特异性的新型α-半乳糖苷酶的兔多抗,并鉴定该抗体的特异性。方法:用脆弱类杆菌来源的基因重组α-半乳糖苷酶(纯度大于90%)免疫新西兰大白兔,获得α-半乳糖苷酶的兔抗血清,并经HiTrap rProteinA柱纯化获得高纯度的抗体;用间接ELISA法检测抗体效价,Western印迹评价抗体的特异性。结果:通过免疫法得到了α-半乳糖苷酶的兔多克隆抗体血清,抗体效价达1:1×10^6,经rProteinA柱纯化后获得了高效价、高纯度的抗体,Western印迹显示该抗体特异性地与新型α-半乳糖苷酶结合。结论:获得了新型α-半乳糖苷酶的高效价、高特异性的兔多克隆抗体,可用于血型转变过程中残留α-半乳糖苷酶含量的特异性检测。  相似文献   

8.
重组α-半乳糖苷酶的制备工艺研究   总被引:7,自引:1,他引:6  
α-半乳糖苷酶是B→O血型改造研究中的关键工具酶。在获得了可分泌表达α-半乳糖苷酶的基因工程毕赤酵母菌株的基础上,进行了工程菌株在5L发酵罐中的发酵。发酵液上清中α-半乳糖苷酶活性为80~150U/mL,蛋白浓度为3~4.5mg/mL,比活性约为20-30U/mg。发酵液采用超滤、阳离子交换层析、疏水层析和阴离子交换层析等纯化方法,建立起了规模化生产重组α-半乳糖苷酶的工艺。制备的重组酶纯度经鉴定达98%以上,符合新生物制品的纯度要求。制备的重组α-半乳糖苷酶可有效地将B型红细胞改造成O型红细胞,从而解决了应用此酶开展B→O血型改造研究的关键问题。  相似文献   

9.
【目的】克隆高原唯一珍惜鹤类——黑颈鹤粪便分离菌Arthrobacter sp.GN14的α-半乳糖苷酶基因agaAGN14,并对该酶进行序列分析、系统发育分析和重组酶的酶学特性分析。【方法】利用简并PCR和GCTAIL-PCR方法获得agaAGN14全长,并对其氨基酸序列(AgaAGN14)进行比对和neighbor-joining系统发育树的构建。将agaAGN14重组到载体pET-28a(+)中并转化到Escherichia coli BL21(DE3)中异源表达。利用组氨酸标签纯化重组α-半乳糖苷酶rAgaAGN14并进行酶学性质分析。【结果】agaAGN14全长2109 bp,GC含量66.8%,编码702个氨基酸(77.5 kDa)。AgaAGN14与数据库中序列的最高一致性为53.7%,与其余胃肠道环境α-半乳糖苷酶的一致性<43%。系统发育分析将AgaAGN14聚于具有催化域KWD和SDXXDXXXR的α-半乳糖苷酶分支,与土壤微生物来源α-半乳糖苷酶距离相对较近,而与其余胃肠道环境α-半乳糖苷酶距离相对较远。rAgaAGN14可水解pNPG、棉籽糖、密二糖、水苏糖、菜粕和棉籽粕,表观最适pH为6.5,在pH 6.0-pH 9.0的范围内稳定并维持50%以上的酶活性。rAgaAGN14的表观最适温度为45℃,在10℃、20℃和37℃内稳定并分别具有约28%、30%和80%的酶活。在45℃pH 6.5条件下,rAgaAGN14对pNPG的Km、Vmax和kcat分别为0.41 mmol/L、18.28μmol/min/mg和25.36 s-1。rAgaAGN14受Ag+、Hg2+及SDS抑制,受K+、Ca2+、Mn2+、Fe3+、Ni2+、Cu2+和β-mercaptoethanol部分抑制,受Co2+、Pb2+、Zn2+、Mg2+、Na+和EDTA的影响较小。【结论】首次报道从黑颈鹤粪便中分离到Arthrobacter菌,并对该属细菌α-半乳糖苷酶进行序列分析、系统发育分析、异源表达和重组酶的酶学特性分析。rAgaAGN14序列较新颖,其酶学特性可能是同时适应黑颈鹤肠道环境和高原淡水湿地环境的结果。  相似文献   

10.
目的:建立一种检测B→O血型改造后残留α-半乳糖苷酶的有效方法。方法:利用重组咖啡豆α-半乳糖苷酶为免疫原制备单克隆抗体,再采用间接ELISA法检测B→O血型改造后残留的工具酶α-半乳糖苷酶的量。结果:最低可检测出的残留酶量约为2.4ng/mL。结论:为B→O血型改造后残留的工具酶的检测提供了有效的方法。  相似文献   

11.
用5 L发酵罐优化了重组咖啡豆α-半乳糖苷酶酵母工程菌pPIC9K-Gal/GS115(本室构建)的高密度发酵工艺.通过对发酵条件的优化,包括甘油补充量及补充时机、甲醇诱导量及诱导时机、溶氧控制、诱导时间等,重组咖啡豆α-半乳糖苷酶在毕赤酵母中得到了高效表达.利用所确定的最适条件进行发酵,菌体密度最终达到368 g/L以上,每批发酵液离心后可获得3.5 L的发酵上清,上清中的蛋白含量达到3 g/L以上,目的蛋白占上清总蛋白的50%以上,含量约为1.5 g/L,上清中α-半乳糖苷酶的活性维持在80 U/ml左右.确立工艺后又进行了3次发酵试验,证明了工艺的可行性和稳定性.为重组咖啡豆α-半乳糖苷酶在B→O血型改造和酶解大豆低聚糖方面的应用奠定了基础.  相似文献   

12.
在获得可分泌表达α-半乳糖苷酶基因工程毕赤酵母菌株的基础上,尝试了基因工程α-半乳糖苷酶在5 L发酵罐中的表达以及从发酵液中纯化α-半乳糖苷酶的研究。在4 L无机盐培养基中接种0.4 L pPIC9K-Gal/GS115培养物,最终得到3.5 L发酵液。离心所得上清中总蛋白含量为2.1 g/L。根据发酵液中目的蛋白含量高、杂质少等特点,设计了如下的纯化流程:离心→超滤→阳离子交换层析→脱盐→浓缩。纯化后电泳银染结果呈单一蛋白带,总回收率41%。通过测定米氏常数等生化性质对重组酶进行鉴定后,完成了人B型红细胞的酶解实验。结果表明,从发酵液中纯化的α-半乳糖苷酶可将B型红细胞改造成O型红细胞。本研究同时在数量和质量上为α-半乳糖苷酶在众多领域的广泛应用奠定了基础。  相似文献   

13.
观察脆弱类杆菌来源的新型重组α-半乳糖苷酶工程菌菌株的遗传稳定性.在有选择压力(Kan+)条件下,将重组α-半乳糖苷酶工程菌菌株在LB固体培养基上采用划线法连续传60代,每隔20代取样保存菌种,最后同时进行菌体形态、生长速度和抗生素抗性、平板传代及诱导过程中的质粒稳定性、限制酶切图谱、测序、表达量和酶活力检测.结果表明细菌形态、生长速度和抗生素抗性等与原始种子库无明显差异;LB固体培养基上传60代后质粒稳定性接近100%,但诱导过程中质粒易丢失.第20、40和60代提取质粒进行酶切检查,酶切图谱没有改变.DNA测序未见α-半乳糖苷酶基因变异.原代菌株及第20、40和60代菌株经诱导培养,其α-半乳糖苷酶表达水平、酶活力及菌体蛋白的SDS-PAGE图谱均无明显差异.说明α-半乳糖苷酶工程菌株在平板传代中具有良好的遗传稳定性  相似文献   

14.
目的从云南豆豉样品中筛选产β-半乳糖苷酶的乳酸菌,并对其产酶条件进行研究。方法从云南省元阳、红河、建水、石屏等地采集豆豉样品,并从中分离得到355株微生物。结果经明胶诱导、脱脂乳平板实验,复筛得到87株蛋白酶产生菌,从中筛选产β-半乳糖苷酶的乳酸菌。通过X-Gal平板实验,共获得34株产β-半乳糖苷酶菌株,通过酶活测定,最终筛选得到1株高产β-半乳糖苷酶菌株GJ-1-3L,经16S rDNA序列分析鉴定为短乳杆菌;GJ-1-3L在以葡萄糖为碳源、多聚蛋白胨为氮源、起始pH 6.5的MRS培养基中,接种量为4%,35℃发酵培养12 h,其β-半乳糖苷酶活性高达6.73 U/mL,Cu2+、Ba2+对酶活有抑制作用,而K2HPO4、MgSO4则能促进酶活。结论 GJ-1-3L菌株来源于豆豉,能够产生β-半乳糖苷酶发酵乳糖,同时产生乳酸,其在食品与乳品加工等方面具有很好的应用前景。  相似文献   

15.
【目的】对滇金丝猴粪便微生物来源的β-半乳糖苷酶进行异源表达和纯化,并研究其酶学性质。【方法】从滇金丝猴粪便微生物的宏基因组中克隆出一个β-半乳糖苷酶基因galRBM20_1,对该基因进行异源表达和酶学性质分析。构建含有T7强启动子的pEASY-E2-galRBM20_1质粒,转化至大肠杆菌BL21(DE3),经IPTG诱导表达后进行酶学性质研究。【结果】滇金丝猴粪便来源的β-半乳糖苷酶(galRBM20_1)最适pH为5.0,在pH 4–7之间能保留70%及其以上的活性。最适温度为45°C,在37°C和45°C下耐受1 h,酶活不变。特别的是,该酶具有良好的Na Cl稳定性,经1–5 mol/L的Na Cl作用1 h后,相对酶活均能超过初始酶活:当NaCl的作用浓度为4 mol/L时,β-半乳糖苷酶相对酶活最高(146%);当NaCl的作用浓度为5mol/L时,β-半乳糖苷酶的相对酶活仍达到135%。【结论】本研究从滇金丝猴粪便微生物的宏基因库中克隆得到β-半乳糖苷酶基因galRBM20_1,并成功在大肠杆菌BL21(DE3)表达,首次从动物胃肠道宏基因组中获得具有耐盐和转糖基产Galactooligosaccharides(GOS)性能的β-半乳糖苷酶。该酶具有良好的耐盐性,和较广的pH作用范围,使其在食品、生物技术领域和环保方面的发展具有良好的应用价值。  相似文献   

16.
目的:探讨脆弱类杆菌来源的基因重组α-半乳糖苷酶清除猪细胞表面α-Gal抗原的作用。方法:用不同浓度的α-半乳糖苷酶酶解猪红细胞、猪胚肾细胞PK15、猪睾丸细胞ST和原代培养的猪成纤维细胞上的α-Gal抗原,酶解温度为26℃,作用时间为2 h;用25μg/m L的FITC-IB4凝集素标记酶解前后的细胞,采用流式细胞仪检测细胞表面α-Gal抗原的清除率。结果:流式细胞检测结果表明,不同组织来源的猪细胞表面的α-Gal抗原的表达量明显不同,所需酶的剂量也不同,但其表面的α-Gal抗原均能被α-半乳糖苷酶清除。结论:脆弱类杆菌来源的α-半乳糖苷酶可以清除猪细胞表面的α-Gal抗原,提示该酶对降低异种移植引起的超急性排斥反应有重要意义。  相似文献   

17.
研究了比色法测定饲用α-半乳糖苷酶活力,以对硝基苯酚-α-D-吡喃半乳糖苷为底物和对硝基苯酚作标准产物。酶活力的测定条件受很多因素的影响,如酶浸提液的pH、酶液稀释倍数、反应温度、作用时间。其中稀释倍数和pH的影响较为显著。稀释酶液的酶活测定值在0.02~0.07U/mL内较为合适。考虑到动物饲用酶制剂的特殊性,测定α-半乳糖苷酶活力时建议规定pH为5.5,反应温度为40℃。根据研究结果,反应时间采用10min,比色波长405nm为宜。  相似文献   

18.
β-半乳糖苷酶 ( EC3.2 .1 .2 )广泛存在于动植物的组织中 ,如在杏仁、桃子、大豆、咖啡豆等植物 ,蜗牛 ,哺乳动物的肠道中都有 β-半乳糖苷酶 .同样 ,微生物也能产生β-半乳糖苷酶 ,俗称乳糖酶 .乳糖操纵子学说的提出就是建立在对微生物β-半乳糖苷酶研究基础之上的 .在过去的研究中 ,关于微生物、动物来源的乳糖酶报道较多[1] ,而对于植物来源的β-半乳糖苷酶研究报道却相对较少[2 ] .它可能降解多糖中 β-构型半乳糖苷键 ,为种子生长发育提供必要的能量来源 .但目前对β-半乳糖苷酶在植物中确切的生理生化功能尚不清楚 .为了进一步阐明…  相似文献   

19.
以甘蔗品种'新台糖22号'为试验材料,在伸长初期以200 mg/L GA3进行叶面喷施处理,对照喷清水,研究GA3处理后甘蔗节间糖苷酶、过氧化物酶、过氧化氢酶的变化,以揭示赤霉素诱导甘蔗节间伸长与相关酶活性的关系.结果表明:(1)GA3处理的株高在各个时期显著高于对照,而且在处理后7、14和28 d分别比对照提高了17.32%、14.50%和8.35%,GA3处理引起甘蔗植株表现的高度优势一直保持到后期,节间伸长效果主要是在茎的中部(5~10节).(2)GA3处理后α-葡萄糖苷酶和α-甘露糖苷酶的活性较对照显著下降;POD和β-半乳糖苷酶的活性也略有下降;α-半乳糖苷酶、β-N-乙酰氨基已糖苷酶、过氧化氢酶的活性显著提高;β-葡萄糖苷酶的活性也有一定程度提高.由此推测,外源GA3主要通过调节α-葡萄糖苷酶活性、α-甘露糖苷酶、α-半乳糖苷酶、β-N-乙酰氨基已糖苷酶活性和过氧化氢酶,其次是POD、β-半乳糖苷酶和β-葡萄糖苷酶活性,最终达到节间伸长效果.  相似文献   

20.
细菌的乳糖操纵子可以在哺乳动物中调控基因的表达,修饰阻抑物基因和操纵基因可调控阻抑物诱导能力及其对操纵基因的亲和力,更好的适应高等动物的内环境。半乳糖苷酶对乳糖操纵子系统有正向调控作用,利用乳糖操纵子在转基因动物中可诱导性调控半乳糖苷酶基因的表达,能有效的提高转基因动物利用半乳糖苷、吸收营养物质的能力。以下从乳糖操纵子的结构功能、乳糖阻抑物功能活性的基因调控、操纵基因的功能以及其在哺乳动物的应用现状四个方面,结合半乳糖苷酶的生理功能和其在转基因动物中应用两个方面进行综述,对乳糖操纵子介导的半乳糖苷酶在转基因动物中的应用效果和前景进行了分析探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号