首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CH5383是新育成的源于中间偃麦草的渗入系,对小麦条锈病和白粉病均表现免疫。为明确其抗性来源、遗传方式和抗病基因在染色体上的位置,将CH5383的系谱材料及其与高感条锈病品种(系)杂交的F1、F2和F2:3家系群体进行条锈病抗性鉴定。结果表明,CH5383对条锈病的抗性源于中间偃麦草,对条锈病生理小种CYR32的抗性由一对显性核基因控制,将此基因暂时命名为YrCH5383。从476对SSR引物中筛选到3对引物Xgwm108、Xbarc206和Xbarc77与抗病基因连锁,遗传距离分别是8.2 cM、10.7 cM和13.6 cM。根据这两对标记在染色体上的位置,将抗病基因定位到3B染色体的长臂上。3B染色体的长臂还未见有正式命名的抗条锈病基因的报道,推测YrCH5383可能是一个源于中间偃麦草的新抗条锈病基因。  相似文献   

2.
滨麦抗条锈病基因的染色体定位和分子标记   总被引:16,自引:1,他引:15  
从滨麦与普通小麦杂交后代中筛选到一条抗条锈病的小滨麦品系93784。以滨麦基因组DNA为探针的荧光原位杂交结果表明,93784是小麦与滨麦的小片段易位系,易位的滨麦染色体片段位于一对小麦染色体的短臂端部,利用该易位系构建了F2分离群体,进行F2单株成株期抗条锈鉴定,抗性分析证明,小滨麦93784中的抗条锈病基因是单基因控制的,位于滨麦染色体的易位片段上,命名为YrLm。进一步采用24对TaqⅠ(T1-T4)/PstⅠd(P1-P6)引物组合对抗感亲本及F2分离群体进行AFLP分析,筛选出一个与抗条锈病基因YrLm连锁的AFLP分子标记,经克隆和测序,该标记片段长度为205bp,定名为P1T3205。  相似文献   

3.
利用抗性接种鉴定、细胞学和SSR分子标记技术相结合的方法,对从八倍体小滨麦和普通小麦烟农15杂种后代选育出的兼抗白粉病和条锈病的小滨麦种质系山农6343进行了鉴定.结果表明,山农6343的根尖细胞染色体数目2n=42,花粉母细胞减数分裂中期I(PMC MI)绝大多数细胞内可观察到21个二价体,平均染色体构型为2n=21Ⅱ,与普通小麦烟农15杂种F1的花粉母细胞内观察到2n=19Ⅱ+1Ⅳ的染色体构型,四价体出现频率为24.1%.利用SSR分子标记技术,在1283对SSR和EST-SSR引物中筛选出两对特异引物BARC236-4A和KSUM134,均能稳定地在山农6343中扩增出滨麦草的特异标记BARC236255和KSUM134245,且两个标记在小滨麦易位系山农0096中得到了验证.初步确定山农6343是一个小滨麦易位系.由于在目前已命名的小麦白粉病和条锈病抗性基因中尚未有来自滨麦草的,推测山农6343可能为新的白粉病和条锈病抗源,对小麦白粉病和条锈病的抗性遗传改良将具有重要的利用价值.  相似文献   

4.
普通小麦Qz180中一个抗条锈病基因的分子作图   总被引:3,自引:0,他引:3  
普通小麦(Triticum aestivum L.)材料Qz180具有良好的抗条锈病特性,经基因推导发现其含有一个优良的抗条锈病的基因,暂定名为YrQz.用Qz180与感病材料铭贤169和WL1分别杂交构建了两个F2群体,用条中30号条锈菌小种对这两个群体进行的抗性测验表明,YrQz为显性单基因遗传.通过SSR和AFLP结合BSA的方法对这个基因进行了分子作图,结果鉴定出与YrQz连锁的2个SSR标记和2个AFLP标记.根据SSR标记的染色体位置,该基因被定位在2B染色体的长臂上,位于两个SSR位点Xgwm388和Xgwm526之间;两个AFLP标记P35M48(452)和P36M61(163)分别位于该基因的两侧,遗传距离分别为3.4 cM和4.1cM.  相似文献   

5.
将近缘植物的抗病基因导入小麦是改良小麦抗病性的重要途径之一,对其外源染色体进行准确鉴定能够提高外源基因的选择与利用效率。本研究分别利用小麦白粉病、条锈病菌生理小种接种、荧光原位杂交和分子标记的方法对来源于中间偃麦草的部分双二倍体TAI7047为中间亲本创制的新种质CH357进行了鉴定分析。结果显示,CH357是一个小麦-中间偃麦草6JS/6B代换系,兼抗小麦白粉病、条锈病2种病害,其抗性可能来源于中间偃麦草的6JS染色体,可以作为一个小麦白粉病和条锈病新抗源进行小麦抗性遗传改良。基于中间偃麦草第6同源群Contig序列开发了160个STS标记,其中8个可作为识别小麦-中间偃麦草异代换系CH357中6JS染色体/片段的特异标记,为中间偃麦草6JS染色体/片段的鉴定提供较为经济和方便的检测手段。  相似文献   

6.
普通小麦Qz180中一个抗条锈病基因的分子作图(英文)   总被引:2,自引:0,他引:2  
普通小麦(Triticum aestivum L.)材料Qz180具有良好的抗条锈病特性,经基因推导发现其含有一个优良的抗条锈病的基因,暂定名为YrQz。用Qz180与感病材料铭贤169和WL1分别杂交构建了两个F_2群体,用条中30号条锈菌小种对这两个群体进行的抗性测验表明,YrQz为显性单基因遗传。通过SSR和AFLP结合BSA的方法对这个基因进行了分子作图,结果鉴定出与YrQz连锁的2个SSR标记和2个AFLP标记。根据SSR标记的染色体位置,该基因被定位在2B染色体的长臂上,位于两个SSR位点Xgwm388和Xgwm526之间;两个AFLP标记P35M48(452)和P36M61(163)分别位于该基因的两侧,遗传距离分别为3.4cM和4.1cM。  相似文献   

7.
Ren Y  Li SR  Li J  Zhou Q  DU XY  Li TJ  Yang WY  Zheng YL 《遗传》2011,33(11):1263-1270
小麦条锈病是影响杂交小麦普及推广的重要因素。文章利用基因推导法和SSR分子标记技术,研究了温光型两系杂交小麦恢复系MR168的抗条锈性遗传规律及其控制基因染色体位置。结果表明,MR168对CY29、CY31、CY32、CY33等条锈菌生理小种表现高抗至免疫;对SY95-71/MR168杂交组合的正反交F1、BC1、F2和F3群体分单株接种鉴定显示,MR168对CY32号小种的抗性受1对显性核基因控制,该抗病基因来源于春小麦品种辽春10号。利用集群分离分析法(Bulked segregant analysis,BSA)和简单重复序列(Simple sequence repeat,SSR)分子标记分析抗病亲本MR168、感病亲本SY95-71及183个F2代单株,发现了与MR168抗条锈病基因连锁的5个微卫星标记Xgwm273、Xgwm18、Xbarc187、Xwmc269、Xwmc406,并将该基因初步定位在1BS着丝粒附近,暂命名为YrMR168;构建了包含YrMR168的SSR标记遗传图谱,距离YrMR168最近的两个微卫星位点是Xgwm18和Xbarc187,遗传距离分别为1.9 cM和2.4 cM,这两个微卫星标记可用于杂交小麦抗条锈病分子标记辅助育种。  相似文献   

8.
YAV-2/TEZ//A.SQ(895)是硬粒小麦与粗山羊草杂交获得的抗白粉病人工合成小麦。本研究利用人工合成小麦YAV-2/TEZ//A.SQ(895)与感白粉病的普通小麦品系品资50098杂交和自交获得的F2代群体及F3家系,在温室条件下鉴定群体的白粉病抗性。遗传分析结果表明,该抗白粉病基因为显性单基因遗传。利用647对小麦SSR引物进行了白粉病抗性基因的分子标记分析,结果表明该白粉病抗性基因与2A染色体的6个SSR标记连锁,与标记Xcfa2086的遗传距离最近,为11.8cM。  相似文献   

9.
抗条锈病小偃麦双体异附加系山农87074-519的鉴定   总被引:7,自引:1,他引:6  
综合利用抗性接种鉴定、细胞学分析、SSR分子标记和基因组原位杂交(GISH)技术相结合的方法,对从长穗偃麦草与小麦复合杂交后代中选育的抗条锈病种质系山农87074-519进行了鉴定。结果表明,山农87074-519的根尖细胞染色体数目2n=44,花粉母细胞减数分裂中期I(PMCMI)绝大多数细胞内可观察到22个二价体,平均染色体构型2n=44=21.82Ⅱ 0.36Ⅰ,它与普通小麦中国春杂种F1的多数花粉母细胞内染色体构型为2n=21Ⅱ 1Ⅰ,因此它是1个附加了1对长穗偃麦草染色体的双体异附加系;以假鹅冠草St基因组总DNA作探针进行原位杂交发现山农87074-519的44条染色体中有2条出现黄绿色杂交信号,且杂交信号遍布整条染色体,证明其附加的长穗偃麦草染色体为St基组;利用SSR分子标记技术,在170对SSR引物中筛选出特异引物BARC165,它能稳定地在山农87074-519中扩增出长穗偃麦草特异标记BARC165268;将长穗偃麦草中BARC165的特异扩增片段克隆测序后制备成探针进行原位杂交,可在山农87074-519的间期染色体和有丝分裂中期染色体检测到杂交信号。山农87074-519综合农艺性状较好,对条锈病免疫,其抗性基因为显性,且位于附加的长穗偃麦草St基组染色体上,暂将其表示为YrSt。该种质系在小麦的遗传改良中具有重要利用价值。  相似文献   

10.
小偃麦衍生品系CH7086抗白粉基因的遗传及SSR分析   总被引:1,自引:0,他引:1  
CH7086是兼抗白粉病、条锈病的小麦新品系,衍牛于来自十倍体长穗偃麦草的八倍体小偃麦与普通小麦的杂种后代.温室接种鉴定结果显示,CH7086对白粉病菌系E09、E21、E26均表现为免疫,且其抗件来自长穗偃麦草.抗性遗传分析表明CH7086的白粉病抗性由1对显性基因控制,暂定名为MlCH86.应用分离群体分组法(BSA)对从CH5241×CH7086的F2中随机选取的95个单株进行微卫星标记检测,发现位于2BL、2DL上的SSR位点Xbarc159在双亲和抗、感池间有特异性,并与抗性基因MlCH86连锁,其遗传距离为10.8 cM.用中国春第2部分同源群的缺体-四体系和双端体系进行验证,进一步将MlCH86定位在2BL上.用白粉病菌系E21、E26接种鉴定表明,MlCH86的抗性反应明显不同于2BL上已命名的抗性基因Pm6、Pm33.根据抗性基因的来源、染色体位置及抗性反应,初步推断存在于CH7086的抗性基因来自长穗偃麦草,它不同于已有的抗白粉病基因,可能是一个新基因.  相似文献   

11.
12.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

13.
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases  相似文献   

14.
15.
16.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle.  相似文献   

17.
18.
Some closely related members of the monocotyledonous familiesAlismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae andAraceae with variable modes of pollination (insect- and wind-pollination) were studied in relation to the ultrastructure of pollenkitt and exine (amount, consistency and distribution of pollenkitt on the surface of pollen grains). The character syndromes of pollen cementing in entomophilous, anemophilous and intermediate (ambophilous or amphiphilous) monocotyledons are the same in principal as in dicotyledons. Comparing present with former results one can summarize: 1) The pollenkitt is always produced in the same manner by the anther tapetum in all angiosperm sub-classes. 2) The variable stickiness of entomophilous and anemophilous pollen always depends on the particular distribution and consistency of the pollenkitt, but not its amount on the pollen surface. 3) The mostly dry and powdery pollen of anemophilous plants always contains a variable amount of inactive pollenkitt in its exine cavities. 4) A step-by step change of the pollen cementing syndrome can be observed from entomophily towards anemophily. 5) From the omnipresence of pollenkitt in all wind-pollinated angiosperms studied one can conclude that the ancestors of anemophilous angiosperms probably have been zoophilous (i.e. entomophilous) throughout.
  相似文献   

19.
20.
正Dear Editor,Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative-sense,nonsegmented, single-stranded RNA virus belonging to the Paramyxoviridae family (Chen 2018). The virus was first reported in primary monkey kidney cells in 1954 (Hsiung1972), then it has been frequently discovered in various  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号