首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Series of curcumin derivatives were synthesized; the inhibitory activities on thioredoxin reductase (TrxR) of all analogues were evaluated by DTNB assay in vitro. It is found that most of the analogues can inhibit TrxR in the low micromolar range; Structure-activity relationship analysis reveals that analogues with furan moiety have excellent inhibitory effect on TrxR in an irreversible manner, indicating that the furan moiety may serve as a possible pharmacophore during the interaction of curcumin analogues with TrxR. The effect of selected curcuminoids on growth of different TrxR overexpressed cancer cell lines was also investigated and discussed.  相似文献   

2.
Curcumin analogs were first investigated for their inhibitory effects on thioredoxin reductase (TrxR). Most of them were more potent TrxR inhibitors than natural curcumin. The structure-activity relationship was summarized, and the curcumin analog was found to inhibit TrxR irreversibly in a time-dependent manner. The action was caused by covalent modification of the redox-active residues Cys(497) and Sec(498) in TrxR.  相似文献   

3.
Curcumin analogs were first investigated for their inhibitory effects on thioredoxin reductase (TrxR). Most of them were more potent TrxR inhibitors than natural curcumin. The structure-activity relationship was summarized, and the curcumin analog was found to inhibit TrxR irreversibly in a time-dependent manner. The action was caused by covalent modification of the redox-active residues Cys497 and Sec498 in TrxR.  相似文献   

4.
Mammalian thioredoxin reductase (TrxR) is an NADPH-dependent homodimer with three redox-active centers per subunit: a FAD, an N-terminal domain dithiol (Cys59/Cys64), and a C-terminal cysteine/selenocysteine motif (Cys497/Sec498). TrxR has multiple roles in antioxidant defense. Opposing these functions, it may also assume a pro-oxidant role under some conditions. In the absence of its main electron-accepting substrates (e.g. thioredoxin), wild-type TrxR generates superoxide (O), which was here detected and quantified by ESR spin trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The peroxidase activity of wild-type TrxR efficiently converted the O adduct (DEPMPO/HOO) to the hydroxyl radical adduct (DEPMPO/HO). This peroxidase activity was Sec-dependent, although multiple mutants lacking Sec could still generate O. Variants of TrxR with C59S and/or C64S mutations displayed markedly reduced inherent NADPH oxidase activity, suggesting that the Cys59/Cys64 dithiol is required for O generation and that O is not derived directly from the FAD. Mutations in the Cys59/Cys64 dithiol also blocked the peroxidase and disulfide reductase activities presumably because of an inability to reduce the Cys497/Sec498 active site. Although the bulk of the DEPMPO/HO signal generated by wild-type TrxR was due to its combined NADPH oxidase and Sec-dependent peroxidase activities, additional experiments showed that some free HO could be generated by the enzyme in an H2O2-dependent and Sec-independent manner. The direct NADPH oxidase and peroxidase activities of TrxR characterized here give insights into the full catalytic potential of this enzyme and may have biological consequences beyond those solely related to its reduction of thioredoxin.  相似文献   

5.
6.
The TrxRl form of thioredoxin reductase (TrxR) was the major form of the enzyme isolated from HeLa cells grown in a fermentor at 35 degrees C under controlled aeration conditions favorable to growth, nominally 30% of saturation of dissolved oxygen or 8 ml of oxygen in a liter of medium. This TrxR1 form was not retained on a heparin affinity matrix, it contained one selenium per subunit, was highly active catalytically, and showed strong cross-reactivity with anti-rat liver TrxR1 polyclonal antibodies. At higher aeration, 50% of saturation of dissolved oxygen or 12 ml of oxygen in a liter of medium, HeLa cell growth was slower and additional TrxR forms that bound to heparin were present in purified enzyme preparations. A minor component, TrxR2, the mitochondrial form of TrxR, was detected in the heparin-bound enzyme fraction. One enzyme form that contained less selenium (ca. 0.5 Se per TrxR subunit) was only about 50% as active with thioredoxin or 5,5'dithiobis(2-nitrobenzoic acid) as substrate. Cross-reactivity of this form with anti-rat liver TrxR1 polyclonal antibodies was very weak. The isoelectric point of the low Se enzyme, 5.85, was higher than that, 5.2-5.4, of normal Se content enzyme. Affinity of purified fully active TrxR1 to heparin could be induced by reduction with NADPH or tris-(2-carboxyethyl)phosphine (TCEP). Under anaerobic conditions there was complete retention of Se indicating that an enzyme conformation change effected by reduction was involved. The TCEP-reduced enzyme form was very oxygen labile and upon exposure to air both the Se content and catalytic activity decreased by about 50%. Addition of millimolar concentrations of NADPH or NADP(+) to the TCEP-reduced enzyme gave full protection from oxygen inactivation. TrxR1 exhibited weak peroxidase activity with H(2)O(2) as substrate in the presence of an NADPH-generating system but this activity was unstable. Specific alkylation of the selenocysteine residue of TrxR1 which completely inhibits the NADPH-dependent reduction of disulfides also destroyed peroxidase activity.  相似文献   

7.
8.
The thioredoxin reductase (TrxR) isoenzymes, TrxR1 in cytosol or nucleus and TrxR2 in mitochondria, are essential mammalian selenocysteine (Sec)-containing flavoenzymes with a -Gly-Cys-Sec-Gly active site. TrxRs are the only enzymes catalyzing the NADPH-dependent reduction of the active site disulfide in thioredoxins (Trxs), which play essential roles in substrate reductions, defense against oxidative stress, and redox regulation by thiol redox control. TrxRs have been found to be overexpressed by a number of human tumors. Curcumin, which is consumed daily by millions of people, is a polyphenol derived from the plant Curcuma longa. This phytochemical has well known anticancer and antiangiogenic properties. In this study we report that rat TrxR1 activity in Trx-dependent disulfide reduction was inhibited by curcumin. The IC(50) value for the enzyme was 3.6 microM after incubation at room temperature for 2 h in vitro. The inhibition occurred with enzyme only in the presence of NADPH and persisted after removal of curcumin. By using mass spectrometry and blotting analysis, we proved that this irreversible inhibition by curcumin was caused by alkylation of both residues in the catalytically active site (Cys(496)/Sec(497)) of the enzyme. However, the curcumin-modified enzyme showed a strongly induced NADPH oxidase activity to produce reactive oxygen species. Inhibition of TrxR by curcumin added to cultured HeLa cells was also observed with an IC(50) of around 15 microM. Modification of TrxR by curcumin provides a possible mechanistic explanation for its cancer preventive activity, shifting the enzyme from an antioxidant to a prooxidant.  相似文献   

9.
Mammalian thioredoxin reductases (TrxRs) contain selenium as selenocysteine (Sec) in the C-terminal redox center -Gly-Cys-Sec-Gly-OH to reduce Trx and other substrates; a Sec-to-Cys substitution in mammalian TrxR yields an almost inactive enzyme. The corresponding tetrapeptide sequence in Drosophila melanogaster TrxR (Dm-TrxR), -Ser-Cys-Cys-Ser-OH, endows the orthologous enzyme with a catalytic competence similar to mammalian selenoenzymes, but implementation of the Ser-containing tetrapeptide sequence SCCS into the mammalian enzyme does not restore the activity of the Sec-to-Cys mutant form (turnover number <2/min). MOPAC calculation suggested that the C-terminal hexapeptide Pro-Ala-Ser-Cys-Cys-Ser-OH functions as a redox center that alleviates the necessity for selenium in Dm-TrxR, and a mutant form of human lung TrxR that mimics this hexapeptide sequence showed improved catalytic turnover (17.4/min for DTNB and 13.2/min for E. coli trx) compared to the Sec-to-Cys mutant. MOPAC calculation also suggested that the dominant form of the Pro-containing hexapeptide is a C+ conformation, which perhaps has a catalytic advantage in facile reduction of the intramolecular disulfide bond between Cys497 and Cys498 by the N-terminal redox center in the neighboring subunit.  相似文献   

10.
Mammalian thioredoxin reductases (TrxR) are dimers homologous to glutathione reductase with a selenocysteine (SeCys) residue in the conserved C-terminal sequence -Gly-Cys-SeCys-Gly. We removed the selenocysteine insertion sequence in the rat gene, and we changed the SeCys(498) encoded by TGA to Cys or Ser by mutagenesis. The truncated protein having the C-terminal SeCys-Gly dipeptide deleted, expected in selenium deficiency, was also engineered. All three mutant enzymes were overexpressed in Escherichia coli and purified to homogeneity with 1 mol of FAD per monomeric subunit. Anaerobic titrations with NADPH rapidly generated the A(540 nm) absorbance resulting from the thiolate-flavin charge transfer complex characteristic of mammalian TrxR. However, only the SeCys(498) --> Cys enzyme showed catalytic activity in reduction of thioredoxin, with a 100-fold lower k(cat) and a 10-fold lower K(m) compared with the wild type rat enzyme. The pH optimum of the SeCys(498) --> Cys mutant enzyme was 9 as opposed to 7 for the wild type TrxR, strongly suggesting involvement of the low pK(a) SeCys selenol in the enzyme mechanism. Whereas H(2)O(2) was a substrate for the wild type enzyme, all mutant enzymes lacked hydroperoxidase activity. Thus selenium is required for the catalytic activities of TrxR explaining the essential role of this trace element in cell growth.  相似文献   

11.
Adequate supply of selenium (Se) is critical for synthesis of selenoproteins through selenocysteine insertion mechanism. To explore this process we investigated the expression of the cytosolic and mitochondrial isoenzymes of thioredoxin reductase (TrxR1 and TrxR2) in response to altered Se supply. Rats were fed diets containing different quantities of selenium and the levels of TrxR1 and TrxR2 protein and their corresponding mRNAs were determined in liver and kidney. Expression of the two isoenzymes was differentially affected, with TrxR1 being more sensitive to Se depletion than TrxR2 and greater changes in liver than kidney. In order to determine if the selenocysteine incorporation sequence (SECIS) element was critical in this response liver and kidney cell lines (H4 and NRK-52E) were transfected with reporter constructs in which expression of luciferase required read-through at a UGA codon and which contained either the TrxR1 or TrxR2 3'UTR, or a combination of the TrxR1 5' and 3'UTRs. Cell lines expressing constructs with the TrxR1 3'UTR demonstrated no response to restricted Se supply. In comparison the Se-deficient cells expressing constructs with the TrxR2 3'UTR showed considerably less luciferase activity than the Se-adequate cells. No disparity of response to Se supply was observed in the constructs containing the different TrxR1 5'UTR variants. The data show that there is a prioritisation of TrxR2 over TrxR1 during Se deficiency such that TrxR1 expression is more sensitive to Se supply than TrxR2 but this sensitivity of TrxR1 was not fully accounted for by TrxR1 5' or 3'UTR sequences when assessed using luciferase reporter constructs.  相似文献   

12.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

13.
2-Cys peroxiredoxins (Prxs) play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC) was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C) of thioredoxin reductase (TrxR) in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx) domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D)), which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD) simulations on AtNTRC and AtNTRA-(Trx-D) proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD) for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D) cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D) because of following reasons: i) unstable and unfavorable interaction of the linker region, ii) shifted Trx domain, and iii) different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.  相似文献   

14.
The ubiquitously expressed mammalian thioredoxin reductases are selenoproteins that together with NADPH regenerate active reduced thioredoxins and are involved in diverse actions mediated by redox control. Two main forms of mammalian thioredoxin reductases have been isolated, one cytosolic (TrxR1) and one present in mitochondria (TrxR2). Although the principal target for TrxRs is thioredoxin, the cytosolic form can regenerate several important antioxidants such as ascorbic acid, lipoic acid, and ubiquinone. In this study we demonstrate that cytochrome c is a substrate for both TrxR1 and TrxR2. In addition, cells overexpressing TrxR2 are more resistant to impairment of complex III in the mitochondrial respiratory chain upon both antimycin A and myxothiazol treatments, suggesting a complex III bypassing function of TrxR2. Furthermore, we show that cytochrome c is reduced by TrxR2 in vitro, not only by using NADPH as an electron donor but also by using NADH, pointing at TrxR2 as an important redox protein on complex III impairment. These findings may be valuable in understanding respiratory disorders in mitochondrial diseases.  相似文献   

15.
Selenoproteins and selenium status in bone physiology and pathology   总被引:1,自引:0,他引:1  

Background

Emerging evidence supports the view that selenoproteins are essential for maintaining bone health.

Scope of review

The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized.

Major conclusions

Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women.

General significance

A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.  相似文献   

16.
APS reductase from Pseudomonas aeruginosa has been shown to form a disulfide-linked adduct with mono-cysteine variants of Escherichia coli thioredoxin and Chlamydomonas reinhardtii thioredoxin h1. These adducts presumably represent trapped versions of the intermediates formed during the catalytic cycle of this thioredoxin-dependent enzyme. The oxidation-reduction midpoint potential of the disulfide bond in the P. aeruginosa APS reductase/C. reinhardtii thioredoxin h1 adduct is -280 mV. Site-directed mutagenesis and mass spectrometry have identified Cys256 as the P. aeruginosa APS reductase residue that forms a disulfide bond with Cys36 of C. reinhardtii TRX h1 and Cys32 of E. coli thioredoxin in these adducts. Spectral perturbation measurements indicate that P. aeruginosa APS reductase can also form a non-covalent complex with E. coli thioredoxin and with C. reinhardtii thioredoxin h1. Perturbation of the resonance Raman and visible-region absorbance spectra of the APS reductase [4Fe-4S] center by either APS or the competitive inhibitor 5'-AMP indicates that both the substrate and product bind in close proximity to the cluster. These results have been interpreted in terms of a scheme in which one of the redox-active cysteine residues serves as the initial reductant for APS bound at or in close proximity to the [4Fe-4S] cluster.  相似文献   

17.
Curcumin, a naturally occurring phytochemical responsible for the colour of turmeric shows a wide range of pharmacological properties including antioxidant, anti-inflammatory and anti-cancer effects. We have earlier shown that curcumin in the presence of Cu(II) causes strand cleavage in DNA through generation of reactive oxygen species, particularly the hydroxyl radical. Thus, curcumin shows both antioxidant as well as pro-oxidant effects. In order to understand the chemical basis of various biological properties of curcumin, we have studied the structure-activity relationship between curcumin and its two naturally occurring derivatives namely demethoxycurcumin (dmC) and bisdemethoxycurcumin (bdmC). Curcumin was found to be the most effective in the DNA cleavage reaction and a reducer of Cu(II) followed by dmC and bdmC. The rate of formation of hydroxyl radicals by the three curcuminoids also showed a similar pattern. The relative antioxidant activity was examined by studying the effect of these curcuminoids on cleavage of plasmid DNA by Fe(II)-EDTA system (hydroxyl radicals) and the generation of singlet oxygen by riboflavin. The results indicate that curcumin is considerably more active both as an antioxidant as well as an oxidative DNA cleaving agent. The DNA cleavage activity is the consequence of binding of Cu(II) to various sites on the curcumin molecule. Based on the present results, we propose three binding sites for Cu(II). Two of the sites are provided by the phenolic and methoxy groups on the two benzene rings and the third site is due to the presence of 1,3-diketone system between the rings. Furthermore, both the antioxidant as well as pro-oxidant effects of curcuminoids are determined by the same structural moieties.  相似文献   

18.
Selenium (Se) is a crucial element exerting antioxidant and neuroprotective effects in different toxic models. It has been suggested that Se acts through selenoproteins, of which thioredoxin reductase (TrxR) is relevant for reduction of harmful hydroperoxides and maintenance of thioredoxin (Trx) redox activity. Of note, the Trx/TrxR system remains poorly studied in toxic models of degenerative disorders. Despite previous reports of our group have demonstrated a protective role of Se in the excitotoxic/pro-oxidant model induced by quinolinic acid (QUIN) in the rat striatum (Santamaría et al., 2003, 2005), the precise mechanism(s) by which Se is inducing protection remains unclear. In this work, we characterized the time course of protective events elicited by Se as pretreatment (Na(2)SO(3), 0.625 mg/kg/day, i.p., administered for 5 consecutive days) in the toxic pattern produced by a single infusion of QUIN (240 nmol/μl) in the rat striatum, to further explore whether TrxR is involved in the Se-induced protection and how is regulated. Se attenuated the QUIN-induced early reactive oxygen species formation, lipid peroxidation, oxidative damage to DNA, loss of mitochondrial reductive capacity and morphological alterations in the striatum. Our results also revealed a novel pattern in which QUIN transiently stimulated an early TrxR cellular localization/distribution (at 30 min and 2 h post-lesion, evidenced by immunohistochemistry), to further stimulate a delayed protein activation (at 24 h) in a manner likely representing a compensatory response to the oxidative damage in course. In turn, Se induced an early stimulation of TrxR activity and expression in a time course that "matches" with the reduction of the QUIN-induced oxidative damage, suggesting that the Trx/TrxR system contributes to the resistance of nerve tissue to QUIN toxicity.  相似文献   

19.
Mammalian thioredoxin reductase [EC 1.6.4.5], a homodimeric flavoprotein, has a marked similarity to glutathione reductase. The two cysteines in the N-terminal FAD domain (-Cys59-x-x-x-x-Cys64-) and histidine (His472) are conserved between them at corresponding positions, but the mammalian thioredoxin reductase contains a C-terminal extension of selenocysteine (Sec or U) at the penultimate position and a preceding cysteine (-Gly-Cys497-Sec498-Gly). Introduction of mutations into the cloned rat thioredoxin reductase gene revealed that residues Cys59, Cys64, His472, Cys497, and Sec498, as well as the sequence of Cys497 and Sec498 were essential for thioredoxin-reducing activity. To analyze the catalytic mechanism of the mammalian thioredoxin reductase, the wild-type, U498C, U498S, C59S, and C64S were overproduced in a baculovirus/insect cell system and purified. The wild-type thioredoxin reductase produced in this system, designated as WT, was found to lack the Sec residue and to terminate at Cys497. A Sec-containing thioredoxin reductase, which was purified from COS-1 cells transfected with the wild-type cDNA, was designated as SecWT and was used as an authentic enzyme. Among mutant enzymes, only U498C retained a slight thioredoxin-reducing activity at about three orders magnitude lower than SecWT. WT, U498C, and U498S showed some 5,5'-dithiobis(2-nitrobenzoic acid)-reducing activity and transhydrogenase activity, and C59S and C64S had substantially no such activities. These data and spectral analyses of these enzymes suggest that Cys59 and Cys64 at the N-terminus, in conjunction with His472, function as primary acceptors for electrons from NADPH via FAD, and that the electrons are then transferred to Cys497-Sec498 at the C-terminus for the reduction of oxidized thioredoxin in the mammalian thioredoxin reductase.  相似文献   

20.
Here, we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C‐terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared with the solution structure. On the basis of these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti‐mycobacterial agents, or as chemical genetic probes of function. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号