首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
八角下脚料、甘蔗滤泥、桐麸联合堆肥的腐熟度指标研究   总被引:1,自引:0,他引:1  
测定八角下脚料与甘蔗滤泥、桐麸联合堆肥过程中温度、C/N比、种子发芽指数(GI)等腐熟度指标,研究各项指标在堆肥进程中的变化情况。结果表明:GI可作为八角下脚料与甘蔗滤泥、桐麸联合堆肥评价堆肥腐熟度的主要评价指标。在起始C/N比为31.45条件下进行八角提油下脚料、甘蔗滤泥、桐麸的联合高温好氧堆肥,堆制21 d和26 d时,三种腐熟度指标未全部显示堆肥腐熟;堆制31 d时,C/N比为18.55,T值为0.59(小于0.6),发芽指数GI为93.7%(大于80%)。从温度、发芽指数和C/N比三个指标均可认为堆肥已达到腐熟。  相似文献   

2.
猪粪堆肥化处理过程中的氮素转变及腐熟度研究   总被引:53,自引:3,他引:50  
经过63d堆肥化处理后,猪粪与木屑混合堆肥及猪粪,木屑与树叶混合堆肥的T-N分别从开始的1.57%和1.78%增加到2.0%和2.11%;水溶性NO3-N/水溶性T-N均从接近于0的水平增加到3%左右;水溶性有机N/水溶性T-N分别增加到70%和76%;水溶性NH4-N/水溶性T-N则分别从开始52%和61%下降至堆肥结束时的30%和24%。种子发芽系数的测定结果表明,加入树叶有利于猪粪的腐熟化,可使猪粪堆肥化处理所城的时间从42d缩短至35d。化学指标与种子发芽系数的相关分析结果表明,水溶性NH4-N/水溶性T-N,水溶性NO3-N/水溶性T-N和水溶性有机N/水溶性T-N均与种子发芽系数呈显著相关,可作为堆肥的腐熟度评价指标。  相似文献   

3.
城市污泥好氧堆肥过程中积温规律的探讨   总被引:19,自引:0,他引:19  
对城市污泥好氧堆肥稳定化过程的温热条件进行了探讨 ,将物候学中的积温概念应用于堆肥稳定化 (腐熟 )过程。它同时兼顾到堆肥过程中的温度强度和持续时间两个参数。对于采用的强制通风静态垛堆肥工艺 ( CTB自动控制堆肥工艺 ) ,建议以 1 5℃作为生物学零度 ,积温指标为 1 0 0 0 0℃· h左右。堆肥原料的性质、堆肥工艺、微生物种群、生物学零度、外界环境等因素可能会对积温产生一定影响  相似文献   

4.
牛粪强化高含油污泥堆肥生物处理及评价   总被引:3,自引:0,他引:3  
以农业废弃物牛粪为生物基质,与油泥废弃物按照质量1∶1混合为3 m×3 m×0.35 m的大型堆肥和1 m×0.5 m×0.35 m的小型堆肥,采用现场堆肥法研究了牛粪对石油烃各组分、生物毒性和微生物多样性交化的影响.结果表明:堆肥初始C/N为26.4,随着堆肥时间的延长,整体呈下降趋势,处理后小型堆肥的C/N为18.4,大型堆肥样品的C/N为18.5,堆体均达到了腐熟;小型堆肥处理堆至115 d后,总石油烃(TPH)降解率达到22.96%;石油烃各组分中饱和烃在堆肥过程中呈减少的趋势;芳香烃在大型堆肥下整体呈升高趋势,小型堆肥下则出现先上升后下降的趋势;发芽指数结果显示,堆肥样品在开始有较大的生物毒性,堆肥过程中发芽指数升高,堆肥结束后由发芽指数得出两种处理方式下的堆肥产物均达到腐熟;由变性梯度凝胶电泳(DGGE)图谱和图谱聚类分析得出,随着堆肥时间的延长,微生物群落也发生了较大的变化.大型堆肥与小型堆肥之间石油烃降解性的差异可能是不同堆肥体积对微生物群落多样性有较大影响所致.  相似文献   

5.
目的利用堆肥处理技术对大庆油田原油污染土壤进行生物修复处理研究,建立最佳堆制配比及堆制条件。方法比较堆肥过程中不同碳氮比对石油烃降解效果的影响,分析堆制过程中各理化参数和总石油烃降解的变化趋势,建立最佳堆制配比及堆制条件。结果 3种比例的堆肥处理,总碳含量呈下降趋势而总氮含量呈上升趋势,当C∶N约为30∶1时,堆肥温度9d持续在50℃以上,土壤中石油烃降解率达到最高。60d后,土壤中总石油烃的降解率可达78%。结论堆肥C∶N为30∶1时为最佳的堆制比例。  相似文献   

6.
好氧堆肥是有机固体废弃物处理处置的有效手段之一,堆肥还田也是贫瘠土壤改良的常用措施。但好氧堆肥是一个典型的CO_2等温室气体的释放过程。如何减少堆肥过程中的CO_2释放,强化堆肥的腐殖化过程对于实现有机固体废弃物的低碳化堆肥、提高作为优良土壤改良剂的腐殖质产量具有重要意义。本文选取农林秸秆和餐厨垃圾作为堆肥原料,研究不同翻堆频率对堆肥过程中的物料减量化、腐殖化和稳定化的影响,以期发现一个较低碳的堆肥工艺,并从微生物角度初步探索了其影响机制。研究结果显示,不同的翻堆频率(分别为每2 d、4 d和6 d翻堆一次),堆料的减量化和腐殖化程度有一定差异,翻堆频率为4 d的堆肥工艺物料减量率最高为50.5%,但碳减量率最低为77.4%;而翻堆频率为2 d的堆肥工艺腐殖质产量最高;3种堆肥工艺经62 d堆肥都达到了腐熟程度,翻堆频率为4 d的堆肥工艺腐熟化程度最高。不同的翻堆频率可能通过影响堆肥过程中堆料的温度、含氧量等因素从而改变堆料中活性微生物量、种类和生物酶活性,进而影响堆料的矿化和腐殖化进程。  相似文献   

7.
沼渣与污泥混合高温堆肥效果及氮素控制   总被引:1,自引:0,他引:1  
以锯木屑为调理剂,以Mg(OH)2与H3PO4的混合液为高温堆肥过程中的氮素抑制剂,研究沼渣与啤酒厂污泥混合堆肥效果。结果表明:混合物经好氧发酵处理后,均达到腐熟。添加氮素固定剂处理和对照处理的最高温度都可达65℃以上,在堆肥过程中添加氮素固定剂处理可提高堆体中有机物质的转化速率,对氮素的固定率达18%以上,添加固氮剂处理的堆肥结束后P元素增加了51%,堆肥品质得到了大幅度提高。堆肥过程中的物料的种子发芽指数不断提高,达到0.9;添加固氮剂的处理堆肥的种子发芽指数为1.0,明显高于对照。可见采用高温堆肥和氮素固定技术可有效地实现沼渣及啤酒厂污泥的混合资源化,该研究为后期沼渣和啤酒厂污泥堆肥的规模化应用提供了技术参数。  相似文献   

8.
城市污泥堆肥温度的空间变异性研究   总被引:6,自引:0,他引:6  
利用半变异函数对城市污泥堆肥温度的空间变异特性进行了研究 ,对堆体温度进行了克里格法 ( KRIGING)插值。采用通风静态垛堆肥工艺 ,试验了 0 .79、2 .0 3m3 / ( min·m3 )两种通风量。沿着堆肥池长度方向设定 2个纵剖面 ,每个纵剖面的面积为 6 .0 m× 1 .0 m,按 0 .5 m× 0 .1 m布设网格。结果表明 ,在水平方向上堆肥温度的半变异函数用球状模型进行拟合效果较好 ,而在垂直方向上的半变异函数用线性模型进行拟合效果较好 ;在水平方向上两个剖面的温度变程 ( range)分别为 0 .90 m、1 .2 5 m,在垂直方向上的变程分别为 0 .75 m、1 .0 0 m;利用克里格法进行最优内插估值得到的温度等值线图表明 ,高温区域一般位于堆体中层 0 .4~ 0 .6 m,低温区域一般位于堆体下层 0~ 0 .4 m;从温度剖面等值线图判断 ,中试规模的城市污泥堆肥 ,其合理通风量小于 0 .79m3 / min· m3 。  相似文献   

9.
微生物菌剂对干旱区城市防护绿地凋落物分解的影响   总被引:2,自引:0,他引:2  
为探寻促进干旱区城市防护绿地凋落物分解的途径,2007年10月下旬,分别采用青贮复合菌剂、秸秆腐熟剂和速腐增效剂3种微生物菌剂,对克拉玛依市区北郊防护绿地内的凋落物进行为期198 d的堆腐试验.结果表明: 堆腐前期(0~30 d),微生物菌剂处理能够加快堆腐凋落物的分解,其中速腐增效剂处理与对照差异显著;随堆腐时间的延长,堆腐凋落物中N、P和Ca浓度均持续上升;试验结束时,各营养元素浓度均比初始值高14.2%~252.9%;在整个堆腐过程中,堆腐凋落物有机碳分解率持续升高,C/N值逐渐下降.添加微生物菌剂加快了堆腐凋落物的腐熟速度,提高了堆腐凋落物养分浓度,其中以秸秆腐熟剂处理效果最佳.  相似文献   

10.
温度和体重对中国对虾碳收支的影响   总被引:4,自引:2,他引:2  
于 1996年 5~ 9月 ,测定了 3种规格 ( 0 .2 71± 0 .0 41g、3 .5 0 9± 0 .3 0 1g、11.0 62± 1.0 2 7g)池塘养殖中国对虾 (Penaeuschinensis)在 2 0℃、2 5℃和 3 0℃下 ,摄食日本刺沙蚕 (Neanthesjaponica)的C收支 .结果表明 ,温度和体重对摄食C有显著影响 ,随温度升高和体重的下降 ,C的摄食量显著增大 ,在 2 0℃、2 5℃和 3 0℃下的平均C摄食量分别为 12 .41、19.12和 2 6.0 8mg·g-1·d-1,在 3个规格下的平均C摄食量分别为 3 6.0 6、12 .17和 9.3 8mg·g-1·d-1.不同规格中国对虾对摄食C的分配比例无显著影响 ,温度是影响中国对虾摄食C分配的主要因素 .在 3个温度下摄食沙蚕的生长C、排粪C、蜕壳C和代谢C占摄食C的平均分配比例分别为 3 1.2 3 %、4.3 8%、7.94%、5 6.45 % ;2 6.83 %、2 .92 %、6.69%、65 .79% ;16.86%、2 .3 8%、5 .99%和 74.76% .  相似文献   

11.
In this study changes in the properties of natural organic matter (NOM) were studied during composting of sewage sludge in a laboratory experiment using the pile method. Typical physicochemical parameters were measured during 53 days of composting including humic fractions. The effects of humification on the molecular properties of humic acids (HA) were investigated by 13C CP/MAS NMR spectroscopy. On the basis of chemical analyses, 53 days of composting sewage sludge with structural material can be divided into three phases: (i) domination of rapid decomposition of non-humic, easily biodegradable organic matter (two to three weeks), (ii) domination of organic matter humification and formation of polycondensed, humic-like substances (the next two weeks), (iii) stabilization of transformed organic material and weak microbial activity. Spectroscopic characterization (13C NMR) of compost humic acids reveals changes in their structures during maturation. The changes are highly correlated with the processes taking place in bulk compost.  相似文献   

12.
Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55 degrees C, manure packing at 25 degrees C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 10(6) CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55 degrees C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M. paratuberculosis was detected by standard culture only on day 0 in all the treatments, but was undetectable in any treatment at 3 and 7 days. On days 14, 28, and 56, M. paratuberculosis was detected in the liquid storage treatment but remained undetectable in the compost and pack treatments. However, M. paratuberculosis DNA was detectable through day 56 in all treatments and up to day 175 in liquid storage treatments. Taken together, the results indicate that high-temperature composting is more effective than pack storage or liquid storage of manure in reducing these pathogens in dairy manure. Therefore, thermophilic composting is recommended for treatment of manures destined for pathogen-sensitive environments such as those for vegetable production, residential gardening, or application to rapidly draining fields.  相似文献   

13.
Aspergillus fumigatus, a medically important fungal opportunist and respiratory allergen, was isolated from woodchips and sewage sludge used in the production of compost at the U.S. Department of Agriculture's composting research facility in Beltsville, Md. It was also regularly isolated as a dominant fungus during forced aeration composting and after 30 days in an unaerated stationary curing pile; in both cases, the fungus was found in pile zones with temperatures less than 60 degrees C. Compost stored outdoors in stationary unaerated piles from 1 to 4 months after screening out of woodchips contained easily detectable amounts of A. fumigatus in the exterior pile zones (0- to 25-cm depths). Semiquantitative studies of the airspora at the composting site revealed that A. fumigatus constituted 75% of the total viable mycoflora captured. At locations 320 m to 8 km from the compost site, the fungus constituted only 2% of the total viable mycoflora in the air. Of 21 samples of commercially available potting soil, one had levels of A. fumigatus nearly equivalent to those of 1-month-old storage compost; 15 others had lower but detectable levels.  相似文献   

14.
Aspergillus fumigatus, a medically important fungal opportunist and respiratory allergen, was isolated from woodchips and sewage sludge used in the production of compost at the U.S. Department of Agriculture's composting research facility in Beltsville, Md. It was also regularly isolated as a dominant fungus during forced aeration composting and after 30 days in an unaerated stationary curing pile; in both cases, the fungus was found in pile zones with temperatures less than 60 degrees C. Compost stored outdoors in stationary unaerated piles from 1 to 4 months after screening out of woodchips contained easily detectable amounts of A. fumigatus in the exterior pile zones (0- to 25-cm depths). Semiquantitative studies of the airspora at the composting site revealed that A. fumigatus constituted 75% of the total viable mycoflora captured. At locations 320 m to 8 km from the compost site, the fungus constituted only 2% of the total viable mycoflora in the air. Of 21 samples of commercially available potting soil, one had levels of A. fumigatus nearly equivalent to those of 1-month-old storage compost; 15 others had lower but detectable levels.  相似文献   

15.
Composting winery waste: sludges and grape stalks   总被引:8,自引:0,他引:8  
The composting of winery waste is an alternative to the traditional disposal of residues, and also involves a commitment to reducing the production of waste products. We studied two residues (sludge and grape stalks), mixed in two proportions (1:1 and 1:2 sludge and grape stalks (v/v)), and we also examined the effects of grinding the grape stalks. Our results showed that composting the assayed materials was possible. Best results were obtained in the compost heap in which the residues were mixed in the proportion 1:2, and where the grape stalks had been previously ground. Optimum results required a moisture around 55% and a maximum temperature around 65 degrees C and an oxygen concentration not lower than 5-10%. The resulting compost had a high agronomic value and is particularly suitable for the soils of the vineyards which have a very low organic matter content. The compost can be reintroduced into the production system, thereby closing the residual material cycle.  相似文献   

16.
The fate of the genetically modified (GM) Pseudomonas chlororaphis strain 3732 RN-L11 and its transgene (lacZ insert) during composting of chicken manure was studied using plate count and nested polymerase chain reaction (PCR) methods. The detection sensitivity of the nested PCR method was 165 copies of the modified gene per gram of moist compost or soil. Compost microcosms consisted of a 100-g mixture of chicken manure and peat, whereas soil microcosms were 100-g samples of sandy clay loam. Each microcosm was inoculated with 4 x 1010 CFU of P. chlororaphis RN-L11. In controlled temperature studies, neither P. chlororaphis RN-L11 nor its transgene could be detected in compost microcosms after incubation temperature was elevated to 45 degrees C or above for one or more days. In contrast, in the compost microcosms incubated at 23 degrees C, the target organism was not detected by the plate count method after 6 days, but its transgene was detectable for at least 45 days. In compost bins, the target organism was not recovered from compost microcosms or soil microcosms at different levels in the bins for 29 days. However, the transgene was detected in 8 of the 9 soil microcosms and in only 1 of the 9 compost microcosms. The compost microcosm in which transgene was detected was at the lower level of the bin where temperatures remained below 45 degrees C. The findings indicated that composting of organic wastes could be used to reduce or degrade heat sensitive GM microorganisms and their transgenes.  相似文献   

17.
Co-composting of soybean residues and leaves in Hong Kong   总被引:11,自引:0,他引:11  
The goal of this project was to evaluate the feasibility of co-composting of soybean residues and leaves and the effects of turning frequency on compost quality. Soybean residues were mixed with leaves and sawdust in 1:1:3 (w/w wet weight) for achieving a C/N ratio of about 30. Three heaps of about 4 m3 of compost mixtures were prepared receiving a turning frequency of daily (pile A), 3-day (pile B) and weekly (pile C) turning. Different turning frequencies did not significantly affect the changes in pH and volatile solids throughout the composting period. High turning frequency caused a lower electrical conductivity and NH4-N contents as well as a shorter duration of thermophilic phase, because of a high heat loss by evaporation and volatilization of ammonia in the pile. The highest C decomposition of 4% occurred in the pile with a 3-day turning period, which coincided with the higher-nitrogen content in this treatment. All treatments with different turning frequencies reached maturation at 63 days as indicated by the soluble organic carbon, soluble NH4-N, C/N ratio and cress seed germination index. However, increasing the aeration during composting period was beneficial in accelerating the maturation process. Taking into consideration less labour and lower operation costs as compared to daily turning, it can be suggested that a 3-day turning frequency would be more appropriate for reaching acceptable quality of compost and ease in operation.  相似文献   

18.
The feasibility of high-rate composting of barley dregs and sewage sludge was examined using a pilot scale bioreactor. A central composite design (CCD) was used to optimize the mix ratio of barley dregs/sewage sludge and moisture content. The performance of the bioreactor was monitored as a function of carbon decomposition rate (CDR) and total volatile solids (TVS) loss rate. The optimum range of mix ratio and moisture content was found to be 35-40% and 55-60%, respectively. High CO2 evolution rate (CER) and TVS loss rate were observed after 3 days of the composting and the compost was matured/stable after 7 days. Cardinal temperature model with inflection (CTMI) was used to analyze the compost stability with respect to CER as a parameter of composting efficiency. After examining the phytotoxicity, the compost can be promoted for land application.  相似文献   

19.
Zeng G  Yu Z  Chen Y  Zhang J  Li H  Yu M  Zhao M 《Bioresource technology》2011,102(10):5905-5911
Two composting piles were prepared by adding to a mixture of rice straw, vegetables and bran: (i) raw soil free from pentachlorophenol (PCP) contamination (pile A) and (ii) PCP-contaminated soil (pile B). It was shown by the results that compost maturity characterized by water soluble carbon (WSC), TOC/TN ratio, germination index (GI) and dehydrogenase activity (DA) was significantly affected by PCP exposure, which resulted in an inferior degree of maturity for pile B. DGGE analysis revealed an inhibited effect of PCP on compost microbial abundance. The bacteria community shifts were mainly consistent with composting factors such as temperature, pH, moisture content and substrates. By contrast, the fungal communities were more sensitive to PCP contamination due to the significant correlation between fungal community shifts and PCP removal. Therefore, the different microbial community compositions for properly evaluating the degree of maturity and PCP contamination were suggested.  相似文献   

20.
Municipal sludge handling is a major problem facing wastewater treatment plants due to the high costs of treatment and disposal. This issue is of special importance in Jordan because of the critical economic situation as well as the lack of financial support for such nonprofit projects. This study investigates the possibility of solving this problem by testing a method of sludge stabilization that requires minimum initial and operating costs. The method tested here is sludge stabilization by composting which is an attempt to transform sludge into a safe, nuisance free, humus like product that can be applied safely to land and can become a source of income that would recover the costs of processing. Two types of composting systems were tested in this study, aerated static pile and windrow. Results obtained indicate that composting of dried sludge was not possible due to the extremely low moisture content; which was overcome by sludge seeding and mixing with amendment and bulking agents. This resulted in efficient stabilization and reduction of the amount of organic matter in the final compost. The experimental results obtained also indicate that both systems (aerated static pile and windrow) are efficient. The organic content of the sludge was reduced in the windrow system by 46% and in the aerated static pile by 66%. In addition, the total volatile solids had decreased in the windrow and the aerated pile by 26 and 73%, respectively. The heavy metals content of the final compost was examined and found to comply with the international standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号