首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
支架材料作为骨组织工程的关键三要素之一具有重要的作用。壳聚糖是唯一带正电的天然碱性多糖,其具有良好的生物相容性、生物可降解性、固有的抗菌性以及促进成骨细胞增殖、促成骨分化等优点,在骨组织工程中被广泛用来制备骨组织工程支架材料。但单纯壳聚糖制备的支架材料机械性能较差、生物响应性较低。因此,近些年来基于壳聚糖的复合支架备受人们关注。目前,人们已经研发出了不同类型的壳聚糖基复合材料,包含与无机相、有机相以及多相复合的支架材料等,并对其生物学性能进行广泛研究,主要包括支架材料在细胞体外培养中的作用、支架材料体内修复不同骨缺损的效果和模式等方面。本文对此进行综述,并对今后的研究趋势进行了初步的探讨  相似文献   

2.
目的以聚乳酸-羟基乙酸共聚物(PLGA)为材料,采用静电纺丝方法制备纤维支架,考察制备参数对纤维支架结构及纤维直径的影响规律。方法以四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)的混合液为溶剂,调节PLGA溶液浓度、流量及电场强度分别制备了具有不同表面形貌的纤维支架。通过扫描电镜(SEM)观察了纺丝溶液的浓度、流量及电场强度对纤维形貌和直径的影响。同时在制备的PLGA纤维支架上接种了人的真皮成纤维细胞,并对细胞在PLGA支架上的黏附和增殖情况进行了研究,从而来评价支架材料的细胞相容性。结论结果表明,随着纺丝溶液浓度的增加,纤维直径逐渐增大,纤维直径的分布也随之增大。随着流量的增加,纤维直径略有增大。随着电场强度的增大,纤维直径没有明显的变化。但是电压和浓度的增大有助于减少珠丝的产生。体外细胞培养实验证明,制备的PLGA纤维支架能支持细胞正常的黏附和增殖活动。  相似文献   

3.
rhBMP-2对壳聚糖复合成骨细胞后的成骨活性影响   总被引:1,自引:0,他引:1  
将重组人骨形态发生蛋白2(rhBMP-2)与壳聚糖为主要基质的支架材料相复合,γ射线辐射灭菌后接种上原代培养的大鼠成骨细胞。体外培养3天后扫描电镜观察细胞与材料的黏附情况,可见成骨细胞紧密黏附于材料孔隙内并保持良好的生长状态。将接种有成骨细胞的复合材料植入裸鼠背部皮下,植入8周后X-ray摄片、组织学染色观察植入部位骨形成及支架材料降解情况。X-ray下可见与植入物大小、位置相符的高密度影,组织学染色证实材料的降解及孔隙内硬骨的生成。  相似文献   

4.
干细胞联合生物支架材料体外构建功能性组织与器官,成为当前组织再生研究的重要策略,而探求具有良好生物相容性的支架材料是其关键.本研究采用扫描电镜、噻唑蓝(MTT)法、荧光显微染色等方法检测小鼠诱导多能干细胞(murine induced pluripotent stem cells, miPSCs)在聚己内酯(poly ε-caprolactone, PCL)静电纺丝纳米纤维支架上的粘附、增殖等生物学特性,探究聚己内酯纳米纤维支架与miPSCs的生物相容性. 结果显示,miPSC在PCL纳米纤维支架上具有良好粘附性并呈集落样生长,其增殖能力及干性标记物(Oct4-GFP+)的表达均不亚于标准对照组;扫描电镜显示,miPSC在PCL纳米纤维支架材料上呈现出绒毛状突起的表面结构.上述结果表明,PCL纳米纤维支架可促进miPSCs的粘附、自我增殖以及干性维持,两者具有良好的生物相容性,为下一步联合生物支架材料与干细胞构建功能性组织奠定了基础.  相似文献   

5.
目的:构建一种组织工程神经支架,并观察体外培养的骨髓基质干细胞在其内部的生长情况,为后续种子细胞的移植提供阶段性实验数据.方法:以Ⅰ型胶原蛋白和壳聚糖为原料通过冷冻干燥技术制备神经支架,扫描电镜观察其内部结构,测量其孔径大小、孔隙率等指标.将体外培养的骨髓基质干细胞与Ⅰ型胶原蛋白-壳聚糖神经支架复合,共培养2天;扫描电镜观察细胞在支架内部的生长情况.结果:构建的神经支架均为圆柱状,内部为纵向平行排列的孔径均匀的微管样结构,细胞紧密贴附在支架微孔内壁上,细胞生长状况良好.结论:Ⅰ型胶原蛋白-壳聚糖支架具有良好的内部三维结构和生物相容性,可与细胞复合后用于修复周围神经缺损.  相似文献   

6.
用原位合成纳米羟基磷灰石的方法制备多孔纳米羟基磷灰石/壳聚糖复合支架;在支架上接种MC3T3-E1细胞,瑞氏染色检测细胞形态,MTT法检测其增殖情况;在诱导培养基中培养30d后,碱性磷酸酶染色比较其分化水平;定量检测细胞的碱性磷酸酶活性;RT-PCR检测成骨相关基因的表达情况。实验结果表明:MC3T3-E1细胞在纳米级羟基磷灰石/壳聚糖复合支架上粘附铺展良好,其增殖率显著高于培养于纯壳聚糖支架上的细胞。碱性磷酸酶染色表明复合支架上的细胞有较高水平的碱性磷酸酶表达。进一步定量检测细胞的碱性磷酸酶活性,结果说明在复合支架上细胞比纯壳聚糖支架上培养的细胞碱性磷酸酶活性提高了约8倍。此外,骨分化相关特征基因骨桥蛋白OPN在复合支架上培养的细胞中的表达水平也明显高于纯壳聚糖上培养的细胞。分化成熟标志基因骨钙素OC在复合支架上培养的细胞中有表达,但是纯壳聚糖支架上培养的细胞中却未检测到。支架中纳米羟基磷灰石的加入不仅提高了前成骨细胞在复合支架上的增殖,而且还促进了它的分化。纳米羟基磷灰石/壳聚糖复合支架表现出良好的生物相容性和生物活性,是极具前景的骨组织工程支架材料。  相似文献   

7.
用原位合成纳米羟基磷灰石的方法制备多孔纳米羟基磷灰石/壳聚糖复合支架;在支架上接种MC 3T3-E1细胞,瑞氏染色检测细胞形态,MTT法检测其增殖情况;在诱导培养基中培养30d后,碱性磷酸酶染色比较其分化水平;定量检测细胞的碱性磷酸酶活性;RT-PCR检测成骨相关基因的表达情况。实验结果表明:MC 3T3-E1细胞在纳米级羟基磷灰石/壳聚糖复合支架上粘附铺展良好,其增殖率显著高于培养于纯壳聚糖支架上的细胞。碱性磷酸酶染色表明复合支架上的细胞有较高水平的碱性磷酸酶表达。进一步定量检测细胞的碱性磷酸酶活性,结果说明在复合支架上细胞比纯壳聚糖支架上培养的细胞碱性磷酸酶活性提高了约8倍。此外,骨分化相关特征基因骨桥蛋白OPN在复合支架上培养的细胞中的表达水平也明显高于纯壳聚糖上培养的细胞。分化成熟标志基因骨钙素OC在复合支架上培养的细胞中有表达,但是纯壳聚糖支架上培养的细胞中却未检测到。支架中纳米羟基磷灰石的加入不仅提高了前成骨细胞在复合支架上的增殖,而且还促进了它的分化。纳米羟基磷灰石/壳聚糖复合支架表现出良好的生物相容性和生物活性,是极具前景的骨组织工程支架材料。  相似文献   

8.
旨在观察自组装IKVAV多肽纳米纤维支架凝胶对鼠嗅鞘细胞(OECs)的作用。通过调整IKVAV溶液pH值并加入培养液触发多肽自组装为支架凝胶, 用原子力显微镜检测IKVAV分子可以自组装成编织状纳米纤维(直径为3~5 nm)。采用原代分离培养方法获得OECs单细胞悬液后, 使用差速贴壁法两次纯化OECs且在第12天通过免疫染色计数OECs纯度为85%。将IKVAV多肽纳米纤维支架凝胶与OECs复合培养, 倒置显微镜下观察OECs生长良好, Calcein-AM/PI活、死细胞染色表明活细胞数达95%。CCK-8法间接细胞计数证实IKVAV多肽可促进OECs的黏附, 对OECs增殖没有影响。由此可见IKVAV多肽可以自组装成纳米纤维支架凝胶且对OECs有良好的生物相容性及黏附作用, 可作为神经组织工程支架材料。  相似文献   

9.
目的:探讨以改性聚乳酸为细胞外基质网架构建组织工程皮肤的可行性。方法:采用盐溶法制备机械性能得到部分改进的聚乳酸多孔泡沫网架,向改进的聚乳酸网架接种真皮成纤维细胞和表皮角质形成细胞,以普通聚乳酸支架作为对照,构建组织工程皮肤。体外培养一周,对网架进行形态学观察。主要观察指标:①一般形态观察②组织学观察。结果:复层组织工程皮肤在结构上与正常皮肤相似,具有真皮、表皮双层结构。改性聚乳酸网架上有双层细胞生长,生长的细胞与网架接触,并且在其表面形成较为明显而连续的细胞层。随着培养时间的延长,发生了一系列变化:表皮部分细胞层数逐渐增多,真皮部分细胞也逐渐增多,并向表皮层深入,位于表皮与网架之间。结论:双醛淀粉作为良好的增柔剂在改善聚乳酸网架的机械性能的同时,也具有良好的细胞相容性,不影响细胞的生长增殖和代谢,可以进一步用作组织工程皮肤的支架材料。  相似文献   

10.
PHB/PLLA组织工程前交叉韧带支架材料改性的实验研究   总被引:2,自引:0,他引:2  
目的:探索体外构建组织工程前交叉韧带(anterior cruciate ligament,ACL)的三维支架材料。方法:以聚羟基丁酸已酯/聚左旋乳酸(PHB/PLLA1:1)制备"三明治"样结构共聚物并测量其孔隙率等指标。以I型胶原对制备的PHB/PLLA支架进行杂化,获得PHB/PLLA胶原杂化支架。扫描电镜观察其表面结构。将兔皮肤成纤维细胞(SF)接种于PHB/PLLA支架与PHB/PLLA胶原杂化支架,观察其在材料上生长情况。结果:PHB/PLLA支架杂化后胶原填充于纤维空隙,分布比较均匀。体外培养的胶原杂化支架材料上要比PHB/PLLA支架有更多的皮肤成纤维细胞生长。结论:胶原杂化有利于细胞种植和生长,PHB/PLLA胶原杂化支架具有良好的三维构型和生物相容性,有望为前交叉韧带损伤的修复提供了一种新型的支架材料。  相似文献   

11.
New development of biomaterial scaffolds remains a prominent issue for the regeneration of lost or fractured bone. Of these scaffolds, a number of bioactive polymers have been synthesized and fabricated for diverse biological roles. Although recent evidence has demonstrated that composite scaffolds such as HA/PLLA have improved properties when compared to either HA or PLLA alone, recent investigations have demonstrated that the phase compatibility between HA and PLLA layers is weak preventing optimal enhancement of the mechanical properties and making the composites prone to breakdown. In the present study, poly (γ-benzyl-L-glutamate) modified hydroxyapatite/(poly (L-lactic acid)) (PBLG-g-HA/PLLA) composite scaffolds were fabricated with improved phase compatibility and tested for their osteogenic properties in 18 Wistar female rats by analyzing new bone formation in 3 mm bilateral femur defects in vivo. At time points, 2, 4 and 8 weeks post surgery, bone formation was evaluated by µ-CT and histological analysis by comparing 4 treatment groups; 1) blank defect, 2) PLLA, 3) HA/PLLA and 4) PBLG-g-HA/PLLA scaffolds. The in vivo analysis demonstrated that new bone formation was much more prominent in HA/PLLA and PBLG-g-HA/PLLA groups as depicted by µ-CT, H&E staining and immunohistochemistry for collagen I. TRAP staining was also utilized to determine the influence of osteoclast cell number and staining intensity to the various scaffolds. No significant differences in either staining intensity or osteoclast numbers between all treatment modalities was observed, however blank defects did contain a higher number of osteoclast-like cells. The results from the present study illustrate the potential of PBLG-g-HA/PLLA scaffolds for bone tissue engineering applications by demonstrating favorable osteogenic properties.  相似文献   

12.
Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of several filamentous fungi including plant pathogens along with swelling of hyphae and spores. The antifungal activity of CTB1 was weakened by hyperosmotic conditions, and hyphae treated with CTB1 burst under hypoosmotic conditions, indicating increased cell wall fragility. CTB1-sensitive fungal species contain high levels of cell wall chitin and/or chitosan. Unlike nikkomycin Z, a competitive inhibitor of chitin synthase (CHS), CTB1 did not inhibit CHS activity. Although CTB1 inhibited CHS biosynthesis, the same result was also obtained with a non-specific proteins inhibitor, cycloheximide, which did not reduce cell wall rigidity. These results indicate that the primary target of CTB1 is not CHS, and we concluded that CTB1 antifungal activity was independent of this sole inhibition. We found that CTB1 bound to chitin but did not bind to β-glucan and chitosan. The results of the present study suggest that CTB1 induces cell wall fragility by binding to chitin, which forms the fungal cell wall. The antifungal activity of CTB1 could be explained by this chitin-binding ability.  相似文献   

13.
The electrospinning of stereocomplex nanofibers of high-molecular-weight poly(L-lactic acid) (PLLA)/poly(D-lactic acid) (PDLA) (PLLA/PDLA = 1:1) was carried out with chloroform as the spinning solvent. The stereocomplex nanofibers with diameters of 830-1400 and 400-970 nm were successfully obtained at voltages of -12 and -25 kV, respectively. Wide-angle X-ray scattering indicated that with an increasing absolute value of voltage from 0 to 25 kV the crystallinity of homo-crystallites composed of either PLLA or PDLA decreased from 5% to 1%, whereas the crystallinity of stereocomplex crystallites increased slightly from 16% to 20%. The obtained results reveal that electrospinning is an effective method to prepare stereocomplex nanofibers with a negligibly small amount of homo-crystallites, even when high-molecular-weight PLLA and PDLA are used, and that the orientation caused by high voltage (or electrically induced high shearing force) during electrospinning enhances the formation and growth of stereocomplex crystallites and suppresses the formation of homo-crystallites.  相似文献   

14.
15.
The three-dimensional arrangement of the intestinal smooth muscle in the ammocoetes of the lamprey (Lampetra japonica) was examined by scanning electron microscopy (SEM) after removal of the intestinal mucosa. In cross section of the posterior midgut, its wall was composed of the parietal wall and the typhlosolar wall of the spiral fold, lining a horseshoe-shaped space, and had two distinct muscle layers. The fiber extensions of the muscle layers in the two parts of the wall were reversed; internal longitudinal and external circular in the parietal wall, but internal circular and external longitudinal in the typhlosolar wall. The positional exchange of the two layers occurred within the transitional area from the parietal wall to the typhlosolar wall, where an interlacing texture of longitudinal and circular braids of fibers was observed. Furthermore, the external fibers of the longitudinal braid extended successively into the circular braid until the longitudinal braid disappeared. However, any fibrous transition from the circular braid into the longitudinal braid in the typhlosolar wall was not clear in the present study. The internal location of the longitudinal layer at the parietal wall may be optimal for its main function of contracting the intestinal tract longitudinally. In addition, the external (to be precise, the internal to the hematopoietic tissue) longitudinal muscle layer in the typhlosolar wall may play an important role in saving and squeezing out blood into the cardinal intestinal vein by longitudinal contraction of the elongated adjacent hematopoietic tissue mass.  相似文献   

16.
Summary Protoplasts derived from cells ofBoergesenia forbesii regenerated aberrant cell walls when treated with cholesteryl hemisuccinate (CHS). Protoplasts treated with CHS, for a short period during the initial stages of cell wall regeneration, developed a patchwork cell wall, possessing regions devoid of cell wall. This effect was reversible, and treated cells ultimately developed a normal, confluent cell wall when removed from the CHS. Freeze fracture studies revealed that for CHS-treated cells, regions without microfibril impressions did possess intramembranous particles (IMP's) but that these regions contained small domains free of IMP's suggestive of lateral phase separation. The data implies that the physical characteristics of the plasma membrane lipid are important to the deposition of cell wall microfibrils during cell wall regeneration. This effect may be attributed to altered lipid-protein interactions, modified membrane fusion characteristics, or altered membrane flow.  相似文献   

17.
Hyphal morphogenesis is largely determined by the mode the cell wall is synthesized. One of the main structural components of the cell wall is the chitin microfibril, whose synthesis is catalyzed at the cell surface by an organized but not fully understood complex of chitin-synthesizing enzymes. Genetic studies have identified several chitin synthase genes (chs) among different fungi. In each given species, several chitin synthases (CHS) may be present. These have been assigned to different classes (I–VII) on the basis of characteristic amino acid sequences. A revised phylogenetic scheme of fungal CHS is presented but there was no apparent correlation between CHS class and a specific cell function or cell cycle stage. The availability of methodology to make genetic fusions between CHS and green fluorescent protein (GFP) and to follow them in living cells with high-resolution confocal microscopy and widefield fluorescence microscopy has made it possible to study the location and dynamics of different CHS in several fungi. Among these, Neurospora crassa was recently used to analyse the spatial distribution and role of chitin synthases in hyphal tip growth. Here we summarise recent advances in this area with particular emphasis on N. crassa. CHS-3, CHS-6 and more recently CHS-1 are abundantly present in the distal regions of the hypha and contained in membranous structures of different shapes from spheres to elongated tubes; as the GFP–CHS tagged structures advance towards the tip, they begin to disintegrate. In the subapical region GFP–CHS was not found in large organelles; it only occurred as fine punctuate fluorescence. These minute structures are probably chitosomes. Finally, at the tip there is always a conspicuous accumulation of GFP–CHS in the Spitzenkörper core where microvesicles are known to accumulate. The collective evidence points to CHS travelling to its destination at the hyphal apex via a secretory route distinct from the conventional ER–Golgi route. The accumulation of CHS microvesicles at the Spk reinforces the view that this structure plays a pivotal role in cell wall growth and hyphal morphogenesis.  相似文献   

18.
19.
The shape and integrity of fungal cells is dependent on the skeletal polysaccharides in their cell walls of which beta(1,3)-glucan and chitin are of principle importance. The human pathogenic fungus Candida albicans has four genes, CHS1, CHS2, CHS3 and CHS8, which encode chitin synthase isoenzymes with different biochemical properties and physiological functions. Analysis of the morphology of chitin in cell wall ghosts revealed two distinct forms of chitin microfibrils: short microcrystalline rodlets that comprised the bulk of the cell wall; and a network of longer interlaced microfibrils in the bud scars and primary septa. Analysis of chitin ghosts of chs mutant strains by shadow-cast transmission electron microscopy showed that the long-chitin microfibrils were absent in chs8 mutants and the short-chitin rodlets were absent in chs3 mutants. The inferred site of chitin microfibril synthesis of these Chs enzymes was corroborated by their localization determined in Chsp-YFP-expressing strains. These results suggest that Chs8p synthesizes the long-chitin microfibrils, and Chs3p synthesizes the short-chitin rodlets at the same cellular location. Therefore the architecture of the chitin skeleton of C. albicans is shaped by the action of more than one chitin synthase at the site of cell wall synthesis.  相似文献   

20.
Chitin synthesis contributes to cell wall biogenesis and is essential for invasion of solid substrata and pathogenicity of filamentous fungi. In contrast to yeasts, filamentous fungi contain up to 10 chitin synthases (CHS), which might reflect overlapping functions and indicate their complex lifestyle. Previous studies have shown that a class VI CHS of the maize anthracnose fungus Colletotrichum graminicola is essential for cell wall synthesis of conidia and vegetative hyphae. Here, we report on cloning and characterization of three additional CHS genes, CgChsI, CgChsIII, and CgChsV, encoding class I, III, and V CHS, respectively. All CHS genes are expressed during vegetative and pathogenic development. DeltaCgChsI and DeltaCgChsIII mutants did not differ significantly from the wild-type isolate with respect to hyphal growth and pathogenicity. In contrast, null mutants in the CgChsV gene, which encodes a CHS with an N-terminal myosin-like motor domain, are strongly impaired in vegetative growth and pathogenicity. Even in osmotically stabilized media, vegetative hyphae of DeltaCgChsV mutants exhibited large balloon-like swellings, appressorial walls appeared to disintegrate during maturation, and infection cells were nonfunctional. Surprisingly, DeltaCgChsV mutants were able to form dome-shaped hyphopodia that exerted force and showed host cell wall penetration rates comparable with the wild type. However, infection hyphae that formed within the plant cells exhibited severe swellings and were not able to proceed with plant colonization efficiently. Consequently, DeltaCgChsV mutants did not develop macroscopically visible anthracnose disease symptoms and, thus, were nonpathogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号