首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
浙江省首例人禽流感病例的病原学与分子生物学研究   总被引:3,自引:0,他引:3  
为确认浙江省首例疑似人禽流感病例,进行病原学分析,对患者气管吸出物进行核酸RT-PCR、荧光定量RT-PCR检测以及病毒分离,并对患者血清进行HI抗体测定.结果表明患者气管吸出物H5N1亚型和A型流感病毒特异核酸均呈阳性,分离到禽流感病毒A/Zhejiang/16/06(H5N1)株;双份血清中禽流感病毒(H5N1)HI抗体滴度分别为1320和1640,从病原学和血清学上证实为人禽流感病例.分离毒株测序结果显示,A/Zhejiang/16/06(H5N1)株在HA裂解位点为多个碱性氨基酸,符合高致病性禽流感病毒特征;该毒株的HA、NA、PB2、NP、M和NS基因序列均为禽源,与2005年我国福建、安徽等地禽流感病毒分离株高度同源,而与越南、泰国以及香港1997年分离到的禽流感病毒株之间存在明显差异.  相似文献   

2.
为确认浙江省首例疑似人禽流感病例,进行病原学分析,对患者气管吸出物进行核酸RT-PCR、荧光定量RT-PCR检测以及病毒分离,并对患者血清进行HI抗体测定。结果表明:患者气管吸出物H5N1亚型和A型流感病毒特异核酸均呈阳性,分离到禽流感病毒A/Zhejiang/16/06(H5N1)株;双份血清中禽流感病毒(H5N1)HI抗体滴度分别为1:320和1:640,从病原学和血清学上证实为人禽流感病例。分离毒株测序结果显示,A/Zhejiang/16/06(H5N1)株在HA裂解位点为多个碱性氨基酸,符合高致病性禽流感病毒特征;该毒株的HA、NA、PB2、NP、M和NS基因序列均为禽源,与2005年我国福建、安徽等地禽流感病毒分离株高度同源,而与越南、泰国以及香港1997年分离到的禽流感病毒株之间存在明显差异。  相似文献   

3.
对2005年11月8日安徽省铜陵市人民医院报告的一例孕妇不明原因肺炎病例的死亡病因进行研究。采集病人的气管吸出物及血液标本,用RT-PCR和Real-ti me PCR方法检测流感病毒A/M、A/H5N1、A/H7N7、A/H9N1亚型特异性核苷酸片段;气管吸出物接种SPF鸡胚进行病毒分离,并对分离物进行鉴定和序列测定及分析;利用血凝抑制试验检测血清标本抗体。结果表明病人气管吸出物可以检测到甲型流感病毒M片段及H5亚型的特异性HA基因。2005年11月9日采集的血清标本用Real-ti me PCR检测到甲型流感病毒M基因。从病人的气管吸出物中分离到H5N1病毒(A/Anhui/1/2005),对病毒的HA基因序列结果进行分析表明病毒是禽源的,其主要依据是受体结合位点第226~228位氨基酸位点(QSG)为禽流感病毒所特异,HA受体连接肽仍为9个碱性氨基酸(LRERRRKRP);基因进化树分析显示,HA基因与禽源病毒进化距离接近。发病后7、8、9d的血清H5N1禽流感病毒HI抗体小于20。对该病例的病原学研究证明,该病例为H5N1禽流感感染病例。  相似文献   

4.
对深圳首例疑似人禽流感病人的标本,进行了RT-PCR、Real-time PCR检测及病毒分离培养、血清中和试验、抗原比检测及发病早期不同病程多份标本的病毒载量分析;对分离物进行了HA基因、NA基因及M基因的核酸检测.结果表明:患者气管吸出物的H5N1亚型和A型流感病毒的特异核酸均呈阳性,并通过细胞培养分离到禽流感病毒A/Guangdong/2/06(H5N1)株.气管吸取物病毒载量随着病程延长逐渐减少,而血清中和抗体水平逐渐上升达到1∶160之后又缓缓下降.A/Guangdong/2/06株8个片段的核苷酸序列显示,其与2005~2006年中国南部的禽流感分离株高度同源,与越南、泰国、印度尼西亚等分离到的禽流感分离株存在明显的差异.  相似文献   

5.
建立一种便捷、灵敏的检测方法,即逆转录环介导等温核酸扩增技术(RT-LAMP)用于H5N1亚型禽流感病毒基因检测.该技术使用特异对应于靶序列中8个基因区段的6条特异引物,在等温条件下进行核酸扩增反应.对51份实验感染动物及病毒培养标本的H5N1亚型禽流感病毒的HA、NA基因区进行了RT-LAMP检测,并以SYBR Green Ⅰ为反应指示剂进行了逆转录环介导等温核酸扩增技术,对该反应进行实时监控,经对扩增产物做内切酶验证和测序分析,证明RT-LAMP技术的特异性;同时,用10倍系列稀释的RNA样品对该检测方法的灵敏度进行了测试.结果显示:利用RT-LAMP技术成功检测到H5N1禽流感病毒的HA、NA基因区,且RT-LAMP与Real-time PCR结果呈现很好的一致性.此方法的灵敏度可达到能检测10个拷贝RNA分子水平.因此,RT-LAMP技术应用于H5N1亚型禽流感病毒的快速检测是一种可行的方法.  相似文献   

6.
建立以Sanger测序为基础的H9N2亚型禽流感病毒全基因组测序方法。从GenBank和GISAID数据库中选取2000至2012年中国地区和中国国家流感中心病毒序列数据库中H9N2亚型禽流感病毒的8个片段基因序列,通过比对分析在相对保守的区域设计分段扩增引物,共16对。选用1株病例分离毒株和4株环境分离毒株对引物进行验证和进一步优化。优化后的16对引物能够有效扩增5株H9N2亚型禽流感病毒,仅个别反应出现非特异扩增。所有获得的目的片段仍能有效进行后续测序实验。建立了一种能够有效获得新型重配H9N2亚型禽流感病毒全基因组序列的Sanger测序方法,为该病原分子流行病学研究和开展风险评估提供技术支撑。  相似文献   

7.
禽流感特异性转移因子的制备及其免疫作用   总被引:3,自引:0,他引:3  
目的制备禽流感病毒特异性转移因子并探讨其对禽流感灭活疫苗的免疫增效作用。方法用禽流感病毒H5N1血清亚型灭活疫苗免疫鸡,用国标血凝抑制方法检测病毒特异性血凝抑制抗体效价。当抗体效价达到高峰时,翅静脉采取外周血,分离淋巴细胞并制备细胞单层、传代后获得禽流感病毒H5N1血清亚型特异性转移因子。用所获得的特异性转移因子进行疫苗免疫增效试验。结果采用本法可获得禽流感病毒特异性转移因子。免疫增效试验表明,在进行禽流感病毒灭活疫苗免疫的同时使用禽流感病毒特异性转移因子,可在一定幅度内提高禽流感病毒抗体水平并能延长抗体维持时间。不同给药途径比较试验表明,口服途径给药的疫苗增效作用优于注射途径给药。结论通过淋巴细胞体外培养可以制备禽流感病毒特异性转移因子。禽流感病毒H5N1血清亚型特异性转移因子对禽流感病毒灭活疫苗具有明显的增效作用,且口服途径给药的疫苗免疫增效作用优于注射途径给药。  相似文献   

8.
建立以Real-time PCR为基础的新型高致病性A(H5N8)亚型禽流感病毒NA基因检测方法。针对2016年6月起频繁暴发的H5N8禽流感疫情,从GenBank和Global Initiative on Sharing All Influenza Data(GISAID)下载2014年以来的H5N8亚型禽流感病毒的NA序列,通过序列比对,在相对保守区域设计适用于实时荧光逆转录聚合酶链式反应(rRT-PCR)的引物和探针。选用28株不同NA亚型的流感病毒进行特异性验证,结果显示本文设计的引物探针组合能够特异性检测高致病性H5N8亚型禽流感病毒的NA基因。灵敏度检测结果显示,本文设计的引物探针组合能检出最低23个拷贝的RNA。本文建立了高致病性H5N8亚型禽流感病毒NA基因特异性荧光定量检测方法,与世界卫生组织(WHO)推荐的A型流感病毒M基因、H5基因检测引物探针的最低检测限一致,可以组合用于H5N8亚型禽流感病毒的检测。  相似文献   

9.
目的:克隆H5N1亚型禽流感病毒的NS1基因,并分析其序列特性。方法:通过RT-PCR方法克隆H5N1亚型禽流感病毒NS1基因,并对该基因片段进行测序,将此序列与数据库中不同时间、地点、宿主来源的H5N1亚型流感毒株NS1基因序列进行同源性比较。结果:获得了678bp的NS1全长基因,可编码225个氨基酸;其与毒株A/chicken/Jilin/hq/2003的同源性最高,二者的核酸和氨基酸的同源性分别为99.7%和99.1%。比对分析发现,该毒株NS1基因在第238-252位有15个核苷酸的缺失;进化树分析表明,它与1997年香港流行的H5N1亚型禽流感病毒毒株分别属于2个不同的分支。结论:克隆了一株H5N1亚型禽流感病毒的NS1基因,并初步分析了其序列特性,为进一步研究NS1基因的功能奠定了基础。  相似文献   

10.
抗H5N1亚型禽流感病毒血凝素单克隆抗体的制备及鉴定   总被引:3,自引:0,他引:3  
目的建立稳定分泌抗H5N1亚型禽流感病毒血凝素单克隆抗体的杂交瘤细胞系,为进一步研究禽流感诊断技术奠定基础。方法以纯化的H5亚型禽流感病毒按常规方法免疫BALBc小鼠,最后一次免疫后第3天取其脾细胞与SP20细胞在聚乙二醇作用下融合,用选择性培养、有限稀释法克隆和血凝抑制试验进行筛选,对获得阳性克隆株用ELISA方法进行亚型鉴定,并用37株H5、H7、H9亚型AIV测定其特异性、覆盖性。结果最后获得了3株分泌特异性抗体的杂交瘤细胞,命名为1E5、4A4、4B1,经长期体外培养和冻存后复苏能稳定地分泌抗体。经鉴定,其亚型均为IgG1、kappa链。腹水HI效价1∶210~1∶216,细胞培养上清HI效价1∶26~1∶28。3株杂交瘤所分泌的单克隆抗体均能与本中心保存的全部20株H5亚型禽流感病毒分离株发生反应,而与15株H9亚型禽流感病毒分离株、2株H7亚型禽流感病毒分离株以及H1H4、H6H15亚型禽流感病毒标准毒株均不反应,与鸡新城疫病毒、鹅新城疫病毒、鹅腺病毒和鸡产蛋下降综合征病毒等均无交叉反应。结论所获3株单克隆抗体可用于禽流感病毒特异性诊断试剂的研制。  相似文献   

11.
Pathogenesis of avian influenza A (H5N1) viruses in ferrets   总被引:19,自引:0,他引:19  
Highly pathogenic avian influenza A H5N1 viruses caused outbreaks of disease in domestic poultry and humans in Hong Kong in 1997. Direct transmission of the H5N1 viruses from birds to humans resulted in 18 documented cases of respiratory illness, including six deaths. Here we evaluated two of the avian H5N1 viruses isolated from humans for their ability to replicate and cause disease in outbred ferrets. A/Hong Kong/483/97 virus was isolated from a fatal case and was highly pathogenic in the BALB/c mouse model, whereas A/Hong Kong/486/97 virus was isolated from a case with mild illness and exhibited a low-pathogenicity phenotype in mice. Ferrets infected intranasally with 10(7) 50% egg infectious doses (EID(50)) of either H5N1 virus exhibited severe lethargy, fever, weight loss, transient lymphopenia, and replication in the upper and lower respiratory tract, as well as multiple systemic organs, including the brain. Gastrointestinal symptoms were seen in some animals. In contrast, weight loss and severe lethargy were not noted in ferrets infected with 10(7) EID(50) of two recent human H3N2 viruses, although these viruses were also isolated from the brains, but not other extrapulmonary organs, of infected animals. The results demonstrate that both H5N1 viruses were highly virulent in the outbred ferret model, unlike the differential pathogenicity documented in inbred BALB/c mice. We propose the ferret as an alternative model system for the study of these highly pathogenic avian viruses.  相似文献   

12.
The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation.  相似文献   

13.
To determine whether avian H5N1 influenza viruses associated with human infections in Vietnam had transmitted to pigs, we investigated serologic evidence of exposure to H5N1 influenza virus in Vietnamese pigs in 2004. Of the 3,175 pig sera tested, 8 (0.25%) were positive for avian H5N1 influenza viruses isolated in 2004 by virus neutralization assay and Western blot analysis. Experimental studies of replication and transmissibility of the 2004 Asian H5N1 viruses in pigs revealed that all viruses tested replicated in the swine respiratory tract but none were transmitted to contact pigs. Virus titers from nasal swabs peaked on day 2, and low titers were detected in the liver of two of the four pigs tested. Our findings indicate that pigs can be infected with highly lethal Asian H5N1 viruses but that these viruses are not readily transmitted between pigs under experimental conditions.  相似文献   

14.
Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are one of the natural hosts where such reassortment events could occur. Virological, histological and serological features of H5N1 virus infection in pigs were characterized in this study. Two- to three-week-old domestic piglets were intranasally inoculated with 10(6) EID(50) of A/Vietnam/1203/04 (VN/04), A/chicken/Indonesia/7/03 (Ck/Indo/03), A/Whooper swan/Mongolia/244/05 (WS/Mong/05), and A/Muscovy duck/Vietnam/ 209/05 (MDk/VN/05) viruses. Swine H3N2 and H1N1 viruses were studied as a positive control for swine influenza virus infection. The pathogenicity of the H5N1 HPAI viruses was also characterized in mouse and ferret animal models. Intranasal inoculation of pigs with H5N1 viruses or consumption of infected chicken meat did not result in severe disease. Mild weight loss was seen in pigs inoculated with WS/Mong/05, Ck/Indo/03 H5N1 and H1N1 swine influenza viruses. WS/Mong/05, Ck/Indo/03 and VN/04 viruses were detected in nasal swabs of inoculated pigs mainly on days 1 and 3. Titers of H5N1 viruses in nasal swabs were remarkably lower compared with those of swine influenza viruses. Replication of all four H5N1 viruses in pigs was restricted to the respiratory tract, mainly to the lungs. Titers of H5N1 viruses in the lungs were lower than those of swine viruses. WS/Mong/05 virus was isolated from trachea and tonsils, and MDk/VN/05 virus was isolated from nasal turbinate of infected pigs. Histological examination revealed mild to moderate bronchiolitis and multifocal alveolitis in the lungs of pigs infected with H5N1 viruses, while infection with swine influenza viruses resulted in severe tracheobronchitis and bronchointerstitial pneumonia. Pigs had low susceptibility to infection with H5N1 HPAI viruses. Inoculation of pigs with H5N1 viruses resulted in asymptomatic to mild symptomatic infection restricted to the respiratory tract and tonsils in contrast to mouse and ferrets animal models, where some of the viruses studied were highly pathogenic and replicated systemically.  相似文献   

15.
Reassortant viruses which possessed the hemagglutinin and neuraminidase genes of wild-type human influenza A viruses and the remaining six RNA segments (internal genes) of the avian A/Pintail/Alberta/119/79 (H4N6) virus were previously found to be attenuated in humans. To study the genetic basis of this attenuation, we isolated influenza A/Pintail/79 X A/Washington/897/80 reassortant viruses which contained human influenza virus H3N2 surface glycoprotein genes and various combinations of avian or human influenza virus internal genes. Twenty-four reassortant viruses were isolated and first evaluated for infectivity in avian (primary chick kidney [PCK]) and mammalian (Madin-Darby canine kidney [MDCK]) tissue culture lines. Reassortant viruses with two specific constellations of viral polymerase genes exhibited a significant host range restriction of replication in mammalian (MDCK) tissue culture compared with that in avian (PCK) tissue culture. The viral polymerase genotype PB2-avian (A) virus, PB1-A virus, and PA-human (H) virus was associated with a 900-fold restriction, while the viral polymerase genotype PB2-H, PB1-A, and PA-H was associated with an 80,000-fold restriction of replication in MDCK compared with that in PCK. Fifteen reassortant viruses were subsequently evaluated for their level of replication in the respiratory tract of squirrel monkeys, and two genetic determinants of attenuation were identified. First, reassortant viruses which possessed the avian influenza virus nucleoprotein gene were as restricted in replication as a virus which possessed all six internal genes of the avian influenza A virus parent, indicating that the nucleoprotein gene is the major determinant of attenuation of avian-human A/Pintail/79 reassortant viruses for monkeys. Second, reassortant viruses which possessed the viral polymerase gene constellation of PB2-H, PB1-A, and PA-H, which was associated with the greater degree of host range restriction in vitro, were highly restricted in replication in monkeys. Since the avian-human influenza reassortant viruses which expressed either mode of attenuation in monkeys replicated to high titer in eggs and in PCK tissue culture, their failure to replicate efficiently in the respiratory epithelium of primates must be due to the failure of viral factors to interact with primate host cell factors. The implications of these findings for the development of live-virus vaccines and for the evolution of influenza A viruses in nature are discussed.  相似文献   

16.
Since it is difficult to predict which influenza virus subtype will cause an influenza pandemic, it is important to prepare influenza virus vaccines against different subtypes and evaluate the safety and immunogenicity of candidate vaccines in preclinical and clinical studies prior to a pandemic. In addition to infecting humans, H3 influenza viruses commonly infect pigs, horses, and avian species. We selected 11 swine, equine, and avian H3 influenza viruses and evaluated their kinetics of replication and ability to induce a broadly cross-reactive antibody response in mice and ferrets. The swine and equine viruses replicated well in the upper respiratory tract of mice. With the exception of one avian virus that replicated poorly in the lower respiratory tract, all of the viruses replicated in mouse lungs. In ferrets, all of the viruses replicated well in the upper respiratory tract, but the equine viruses replicated poorly in the lungs. Extrapulmonary spread was not observed in either mice or ferrets. No single virus elicited antibodies that cross-reacted with viruses from all three animal sources. Avian and equine H3 viruses elicited broadly cross-reactive antibodies against heterologous viruses isolated from the same or other species, but the swine viruses did not. We selected an equine and an avian H3 influenza virus for further development as vaccines.  相似文献   

17.
An avian influenza A virus, A/Mallard/NY/6750/78(H2N2), was restricted in in replication in the respiratory tract of squirrel monkeys. Avian-human influenza A reassortant viruses possessing the six RNA segments coding for nonsurface proteins (i.e., internal genes) of this avian virus were as restricted in replication in squirrel monkeys as their avian influenza parent. These findings indicated that restriction of replication of the avian influenza virus is a function of one or more of its internal genes. For an investigation of which of the avian influenza genes was responsible for restricted replication in the respiratory tract of primates, reassortant viruses were produced that contained human influenza virus surface antigens from the A/Udorn/72(H3N2) virus and one or more of the internal genes derived from the avian influenza virus parent. Avian-human reassortant influenza A viruses containing only the nucleoprotein or matrix protein RNA segment from the avian influenza virus parent were as restricted in their growth as an avian-human influenza reassortant virus containing each of the six avian influenza internal genes. In addition, an avian-human influenza reassortant virus possessing only the avian RNA 1 and nonstructural genes (which by themselves do not specify restricted replication) manifested a significant reduction of virus replication in squirrel monkey tracheas. Thus, the avian nucleoprotein and matrix genes appear to play a major role in the host range restriction exhibited by the A/Mallard/78 virus and its reassortants, but the combination of RNA 1 and nonstructural genes also contributes to restriction of replication.  相似文献   

18.
Although oral exposure to H5N1 highly pathogenic avian influenza viruses is a risk factor for infection in humans, it is unclear how oral exposure to these virus results in lethal respiratory infections. To address this issue, we inoculated ferrets and hamsters with two highly pathogenic H5N1 strains. These viruses, inoculated directly into the stomach, were isolated from the large intestine and the mesenteric lymph nodes within 1 day of inoculation and subsequently spread to multiple tissues, including lung, liver, and brain. Histopathologic analysis of ferrets infected with virus via direct intragastric inoculation revealed lymph folliculitis in the digestive tract and mesenteric lymph nodes and focal interstitial pneumonia. Comparable results were obtained with the hamster model. We conclude that, in mammals, ingested H5N1 influenza viruses can disseminate to nondigestive organs, possibly through the lymphatic system of the gastrointestinal tract.  相似文献   

19.
Before 2003, only occasional case reports of human H7 influenza virus infections occurred as a result of direct animal-to-human transmission or laboratory accidents; most of these infections resulted in conjunctivitis. An increase in isolation of avian influenza A H7 viruses from poultry outbreaks and humans has raised concerns that additional zoonotic transmissions of influenza viruses from poultry to humans may occur. To better understand the pathogenesis of H7 viruses, we have investigated their ability to cause disease in mouse and ferret models. Mice were infected intranasally with H7 viruses of high and low pathogenicity isolated from The Netherlands in 2003 (Netherlands/03), the northeastern United States in 2002-2003, and Canada in 2004 and were monitored for morbidity, mortality, viral replication, and proinflammatory cytokine production in respiratory organs. All H7 viruses replicated efficiently in the respiratory tracts of mice, but only Netherlands/03 isolates replicated in systemic organs, including the brain. Only A/NL/219/03 (NL/219), an H7N7 virus isolated from a single fatal human case, was highly lethal for mice and caused severe disease in ferrets. Supporting the apparent ocular tropism observed in humans following infection with viruses of the H7 subtype, both Eurasian and North American lineage H7 viruses were detected in the mouse eye following ocular inoculation, whereas an H7N2 virus isolated from the human respiratory tract was not. Therefore, in general, the relative virulence and cell tropism of the H7 viruses in these animal models correlated with the observed virulence in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号