首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.  相似文献   

2.
Lipopolysaccharide (LPS) engages Toll-like receptor 4 (TLR4) on various cells to initiate inflammatory and angiogenic pathways. FADD is an adaptor protein involved in death receptor-mediated apoptosis. Here we report a role for FADD in regulation of TLR4 signals in endothelial cells. FADD specifically attenuates LPS-induced activation of c-Jun NH(2)-terminal kinase and phosphatidylinositol 3'-kinase in a death domain-dependent manner. In contrast, FADD-null cells show hyperactivation of these kinases. Examining physical associations of endogenous proteins, we show that FADD interacts with interleukin-1 receptor-associated kinase 1 (IRAK1) and MyD88. LPS stimulation increases IRAK1-FADD interaction and recruitment of the IRAK1-FADD complex to activated MyD88. IRAK1 is required for FADD-MyD88 interaction, as FADD does not associate with MyD88 in IRAK1-null cells. By shuttling FADD to MyD88, IRAK1 provides a mechanism for controlled and limited activation of the TLR4 signaling pathway. Functionally, enforced FADD expression inhibited LPS- but not vascular endothelial growth factor-induced endothelial cell sprouting, while FADD deficiency led to enhanced production of proinflammatory cytokines induced by stimulation of TLR4 and TLR2, but not TLR3. Reconstitution of FADD reversed the enhanced production of proinflammatory cytokines. Thus, FADD is a physiological negative regulator of IRAK1/MyD88-dependent responses in innate immune signaling.  相似文献   

3.
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.  相似文献   

4.
Human Toll-like receptor (TLR) 4 and TLR2 receptors recognize LPS or lipoteichoic acid (LTA), respectively. Prolonged exposure of human macrophages/monocytes to bacterial LPS induces a state of adaptation/tolerance to subsequent LPS challenge. Inflammatory gene expressions such as IL-1beta and TNF-alpha are selectively repressed, while certain anti-inflammatory genes such as secretory IL-1R antagonist are still induced in LPS-adapted/tolerant cells. In this report, we demonstrate that LPS-tolerized human promonocytic THP-1 cells develop cross-tolerance and no longer respond to LTA-induced IL-1beta/TNF-alpha production, indicating that disruption of common intracellular signaling is responsible for the decreased IL-1beta/TNF-alpha production. We observe that down-regulation of IL-1R-associated kinase (IRAK) protein level and kinase activity closely correlates with the development of cross-tolerance. IRAK protein levels and kinase activities in LPS-tolerized cells remain low and hyporesponsive to subsequent LPS or LTA challenges. We also demonstrate that THP-1 cells with prolonged LTA treatment develop LTA tolerance and do not express IL-1beta/TNF-alpha upon further LTA challenge. Strikingly, cells tolerized with LTA are only refractory to subsequent LTA challenge and can still respond to LPS stimulation. Correspondingly, stimulation of TLR2 by LTA, although activating IRAK, does not cause IRAK degradation. IRAK from LTA-tolerized cells can be subsequently activated and degraded by further LPS challenge, but not LTA treatment. Our studies reveal that LTA-induced tolerance is distinct compared with that of LPS tolerance, and is likely due to disruption of unique TLR2 signaling components upstream of MyD88/IRAK.  相似文献   

5.
6.
When monocyte-derived immature dendritic cells (imDCs) were stimulated with LPS in the presence of anti-CD33/Siglec-3 mAb, the production of IL-12 and phosphorylation of NF-κB decreased significantly. The cell surface proteins of imDCs were chemically cross-linked, and CD33-linked proteins were analyzed by SDS-PAGE and immunoblotting. It was CD14 that was found to be cross-linked with CD33. A proximity ligation assay also indicated that CD33 was colocalized with CD14 on the cell surface of imDCs. Sialic acid-dependent binding of CD33 to CD14 was confirmed by a plate assay using recombinant CD33 and CD14. Three types of cells (HEK293T cells expressing the LPS receptor complex (Toll-like receptor (TLR) cells), and the LPS receptor complex plus either wild-type CD33 (TLR/CD33WT cells) or mutated CD33 without sialic acid-binding activity (TLR/CD33RA cells)) were prepared, and then the binding and uptake of LPS were investigated. Although the level of LPS bound on the cell surface was similar among these cells, the uptake of LPS was reduced in TLR/CD33WT cells. A higher level of CD14-bound LPS and a lower level of TLR4-bound LPS were detected in TLR/CD33WT cells compared with the other two cell types, probably due to reduced presentation of LPS from CD14 to TLR4. Phosphorylation of NF-κB after stimulation with LPS was also compared. Wild-type CD33 but not mutated CD33 significantly reduced the phosphorylation of NF-κB. These results suggest that CD14 is an endogenous ligand for CD33 and that ligation of CD33 with CD14 modulates with the presentation of LPS from CD14 to TLR4, leading to down-regulation of TLR4-mediated signaling.  相似文献   

7.
TLR8-mediated NF-kappaB and IRF7 activation are abolished in human IRAK-deficient 293 cells and IRAK4-deficient fibroblast cells. Both wild-type and kinase-inactive mutants of IRAK and IRAK4, respectively, restored TLR8-mediated NF-kappaB and IRF7 activation in the IRAK- and IRAK4-deficient cells, indicating that the kinase activity of IRAK and IRAK4 is probably redundant for TLR8-mediated signaling. We recently found that TLR8 mediates a unique NF-kappaB activation pathway in human 293 cells and mouse embryonic fibroblasts, accompanied only by IkappaBalpha phosphorylation and not IkappaBalpha degradation, whereas interleukin (IL)-1 stimulation causes both IkappaBalpha phosphorylation and degradation. The intermediate signaling events mediated by IL-1 (including IRAK modifications and degradation and TAK1 activation) were not detected in cells stimulated by TLR8 ligands. TLR8 ligands trigger similar levels of IkappaBalpha phosphorylation and NF-kappaB and JNK activation in TAK1(-/-) mouse embryo fibroblasts (MEFs) as compared with wild-type MEFs, whereas lack of TAK1 results in reduced IL-1-mediated NF-kappaB activation and abolished IL-1-induced JNK activation. The above results indicate that although TLR8-mediated NF-kappaB and JNK activation are IRAK-dependent, they do not require IRAK modification and are TAK1-independent. On the other hand, TLR8-mediated IkappaBalpha phosphorylation, NF-kappaB, and JNK activation are completely abolished in MEKK3(-/-) MEFs, whereas IL-1-mediated signaling was only moderately reduced in these deficient MEFs as compared with wild-type cells. The differences between IL-1R- and TLR8-mediated NF-kappaB activation are also reflected at the level of IkappaB kinase (IKK) complex. TLR8 ligands induced IKKgamma phosphorylation, whereas IKKalpha/beta phosphorylation and IKKgamma ubiquitination that can be induced by IL-1 were not detected in cells treated with TLR8 ligands. We postulate that TLR8-mediated MEKK3-dependent IKKgamma phosphorylation might play an important role in the activation of IKK complex, leading to IkappaBalpha phosphorylation.  相似文献   

8.
The glycosylphosphatidyl anchored molecule CD14 to the monocyte membrane plays a prominent role in innate immunity, and the paradigms for CD14 selective signaling are beginning to be elucidated. In this study, transfected human monocytic cell line THP-1 and Chinese hamster ovary (CHO) fibroblastic cells were used to examine phagocytosis of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Flow cytometry was combined with molecular and biochemical approaches to demonstrate a dual mechanism for BCG internalization involving either CD14 alone or a CD14-regulated complement receptor (CR)3-dependent pathway. Phagocytosis by CD14-positive THP-1 cells was attenuated by phosphatidylinositol-3 inhibitors LY294002 and wortmannin and experiments using transfected CHO cells showed substantial accumulation of phosphatidylinositol-3,4,5-trisphosphate at the BCG attachment site in CHO cells expressing CD14 and TLR2 suggesting that bacteria bind to CD14 and use TLR2 to initiate a PI3K signaling pathway. Additional experiments using blocking Abs showed that anti-TLR2 Abs inhibit phagocytosis of BCG by THP-1 cells. Furthermore, knockdown of cytohesin-1, a PI3K-regulated adaptor molecule for beta(2) integrin activation, specifically abrogated CD14-regulated CR3 ingestion of BCG consistent with the observation of physical association between CR3 and cytohesin-1 in cells stimulated with mycobacterial surface components. These findings reveal that mycobacteria promote their uptake through a process of "inside-out" signaling involving CD14, TLR2, PI3K, and cytohesin-1. This converts low avidity CR3 into an active receptor leading to increased bacterial internalization.  相似文献   

9.
The complex consisting of Toll-like receptor 4 (TLR4) and associated MD-2 signals the presence of lipopolysaccharide (LPS) when it is expressed in cell lines. We here show that normal human mononuclear cells express TLR4 and signal LPS via TLR4. CD14 is a molecule that binds to LPS and facilitates its signaling. Little is known, however, about the relationship of CD14 with TLR4-MD-2. We show that CD14 helps TLR4-MD-2 to sense and signal the presence of LPS. CD14 has also been implicated in recognition of apoptotic cells, which leads to phagocytosis without activation. Membrane phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PtdIns) are thought to serve as the ligands for CD14 in apoptotic cells. We find that PtdIns acts as an LPS antagonist in the signaling via TLR4-MD-2. TLR4-MD-2 seems to discriminate LPS from phospholipids. The signaling via TLR4-MD-2 is thus regulated by CD14 and phospholipid such as PtdIns.  相似文献   

10.
Mammalian responses to LPS require the expression of Toll-like receptor 4 (TLR4), CD14, and MD-2. We expressed fluorescent TLR4 in cell lines and found that TLR4 densely localized to the surface and the Golgi. Similar distributions were observed in human monocytes. Confocal imaging revealed rapid recycling of TLR4-CD14-MD-2 complexes between the Golgi and the plasma membrane. Fluorescent LPS followed these trafficking pathways in CD14-positive cells. The TLR4- adapter protein, MyD88, translocated to the cell surface upon LPS exposure, and cross-linking of surface TLR4 with antibody induced signaling. Golgi-associated TLR4 expression was disrupted by brefeldin A, yet LPS signaling was preserved. We conclude that LPS signaling may be initiated by surface aggregation of TLR4 and is not dependent upon LPS trafficking to the Golgi.  相似文献   

11.
Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTENfl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo.  相似文献   

12.
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.  相似文献   

13.
Down-regulation of cell surface expression of Toll-like receptor (TLR) 4 following LPS stimulation has been suggested to underlie endotoxin tolerance. In this study, we examined whether overexpression of TLR2 or TLR4 would affect the ability of cells to become tolerant to LPS or the mycobacterial components, arabinose-capped lipoarabinomannan (LAM) and soluble tuberculosis factor (STF). To this end, Chinese hamster ovary/CD14 cells stably transfected with a NF-kappaB-dependent reporter construct, endothelial leukocyte adhesion molecule CD25 (the 3E10 clone), were engineered to overexpress either human TLR2 or TLR4. Transfected TLRs exhibited proper signaling functions, as evidenced by increased LPS responsiveness of 3E10/TLR4 cells and acquisition of sensitivity to TLR2-specific ligands upon transfection of TLR2 into TLR2-negative 3E10 cells. Pretreatment of cells with LPS, LAM, or STF did not modulate TLR2 or TLR4 cell surface expression. Following LPS exposure, 3E10, 3E10/TLR2, and 3E10/TLR4 cells exhibited comparable decreases in LPS-mediated NF-kappaB activation and mitogen-activated protein (MAP) kinase phosphorylation. Likewise, LPS pretreatment profoundly inhibited LPS-induced NF-kappaB translocation in Chinese hamster ovary cells that concomitantly overexpressed human TLR4 and myeloid differentiation protein-2 (MD-2), but failed to modulate TLR4 or MD-2 cell surface expression. Pretreatment of 3E10/TLR2 cells with LAM or STF decreased their NF-kappaB responses induced by subsequent stimulation with these substances or LPS. Conversely, prior exposure of 3E10/TLR2 cells to LPS led to hyporesponsiveness to LPS, LAM, and STF, indicating that LPS and mycobacterial products induce cross-tolerance. Thus, tolerance to LPS and mycobacterial components cannot be attributed solely to a decrease in TLR/MD-2 expression levels, suggesting inhibition of expression or function of other signaling intermediates.  相似文献   

14.
Innate immune activation via Toll-like receptors (TLRs), although critical for host defense against infection, must be regulated to prevent sustained cell activation that can lead to cell death. Cells repeatedly stimulated with lipopolysaccharide (LPS) develop endotoxin tolerance making the cells hypo-responsive to additional TLR stimulation. We show here that DOK3 is a negative regulator of TLR signaling by limiting LPS-induced ERK activation and cytokine responses in macrophages. LPS induces ubiquitin-mediated degradation of DOK3 leading to SOS1 degradation and inhibition of ERK activation. DOK3 mice are hypersensitive to sublethal doses of LPS and have altered cytokine responses in vivo. During endotoxin tolerance, DOK3 expression remains stable, and it negatively regulates the expression of SHIP1, IRAK-M, SOCS1, and SOS1. As such, DOK3-deficient macrophages are more sensitive to LPS-induced tolerance becoming tolerant at lower levels of LPS than wild type cells. Taken together, the absence of DOK3 increases LPS signaling, contributing to LPS-induced tolerance. Thus, DOK3 plays a role in TLR signaling during both na?ve and endotoxin-induced tolerant conditions.  相似文献   

15.
Signaling events induced by lipopolysaccharide-activated toll-like receptor 2.   总被引:30,自引:0,他引:30  
Human Toll-like receptor 2 (TLR2) is a signaling receptor that responds to LPS and activates NF-kappaB. Here, we investigate further the events triggered by TLR2 in response to LPS. We show that TLR2 associates with the high-affinity LPS binding protein membrane CD14 to serve as an LPS receptor complex, and that LPS treatment enhances the oligomerization of TLR2. Concomitant with receptor oligomerization, the IL-1R-associated kinase (IRAK) is recruited to the TLR2 complex. Intracellular deletion variants of TLR2 lacking C-terminal 13 or 141 aa fail to recruit IRAK, which is consistent with the inability of these mutants to transmit LPS cellular signaling. Moreover, both deletion mutants could still form complexes with wild-type TLR2 and act in a dominant-negative (DN) fashion to block TLR2-mediated signal transduction. DN constructs of myeloid differentiation protein, IRAK, TNF receptor-associated factor 6, and NF-kappaB-inducing kinase, when coexpressed with TLR2, abrogate TLR2-mediated NF-kappaB activation. These results reveal a conserved signaling pathway for TLR2 and IL-1Rs and suggest a molecular mechanism for the inhibition of TLR2 by DN variants.  相似文献   

16.
Although TLR are often studied on DC because of their ability to bridge innate and adaptive defenses, TLR are also expressed by epithelial cells. Because the majority of cancers are carcinomas, and thus of epithelial origin, we wanted to know whether a carcinoma and DC responded similarly to a TLR agonist. We found the mammary carcinoma 4T1 and CD11c+ DC both secreted proinflammatory chemokines in response to the TLR4 agonist lipopolysaccharide (LPS). However a clear dichotomy existed. DC, but not 4T1 secreted IL-1β, TNF-α, and upregulated CD80 and CD86 expression following LPS treatment. A potential reason for differential responsiveness was that DC expressed greater levels of TLR4, CD14, Myd88, and TRAM. Despite the low level of TLR signaling proteins, the carcinoma were able to elicit a range of responses contingent upon the source, dose, length, and frequency of TLR agonist treatment. Thus, carcinoma and DC are distinctly responsive to LPS.  相似文献   

17.
Toll-like receptor (TLR) signaling is an important component in the inflammatory response generated in diseases characterized by autoantibody reactivity to proteins such as SSA/Ro in complex with endogenous nucleic acids. Complement receptor 3 (CR3), a genetic variant of which has been identified as a risk factor in systemic lupus erythematosus, has been shown to induce tolerogenic responses in dendritic cells and suppress TLR4 responses in a murine sepsis model. Accordingly, this study addressed the hypothesis that activation of CR3, influenced by genotype of CD11b, negatively regulates TLR7/8-dependent effector function. Allosteric activation of CD11b via pretreatment with the small molecule, leukadhedrin 1 (LA1), significantly attenuated TLR7/8-induced (hY3 RNA, R848) secretion of TNFα in THP-1 cells and human macrophages isolated from donors homozygous for the ancestral common ITGAM allele at rs1143679. This inhibition was accompanied by profound degradation of the adaptor protein MyD88, an effect not observed with direct inhibition of TLR ligation by an antagonist oligonucleotide. In contrast, the addition of LA1 after incubation with the TLR agonists did not result in MyD88 degradation and subsequent attenuation of TNFα secretion. In TLR7/8-stimulated macrophages isolated from donors heterozygous for the CD11b variant, pretreatment with LA1 did not down-regulate TNFα release. These novel findings support a negative cross-talk between CR3 and TLR pathways likely to be induced by antibodies reactive with ribonucleoproteins and point to the development of CR3-specific agonists as potential therapeutics for diseases such as neonatal lupus.  相似文献   

18.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

19.
We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific molecular components that mediate antagonism, we developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Experiments using immunoprecipitates of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal molecular component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.  相似文献   

20.
Fc gamma R clustering in macrophages activates signaling events that result in phagocytosis. Phagocytosis is accompanied by the generation harmful byproducts such as reactive oxygen radicals and production of inflammatory cytokines, which mandate that the phagocytic process be subject to a tight regulation. The molecular mechanisms involved in this regulation are not fully understood. In this study, we have examined the role of the inositol 3-phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in Fc gamma R-induced macrophage function. We demonstrate that in ex vivo murine peritoneal macrophages that are deficient in PTEN expression, Fc gamma R-induced Akt and extracellular signal-regulated kinase phosphorylation are enhanced. Notably, PTEN(-/-) macrophages showed constitutively high phosphorylation of Akt. However, PTEN did not seem to influence tyrosine phosphorylation events induced by Fc gamma R clustering. Furthermore, PTEN(-/-) macrophages displayed enhanced phagocytic ability. Likewise, Fc gamma R-induced production of TNF-alpha, IL-6, and IL-10 was significantly elevated in PTEN(-/-) macrophages. Surprisingly, LPS-induced TNF-alpha production was down-regulated in PTEN(-/-) macrophages. Analyzing the molecular events leading to PTEN influence on LPS/Toll-like receptor 4 (TLR4) signaling, we found that LPS-induced activation of mitogen-activated protein kinases is suppressed in PTEN(-/-) cells. Previous reports indicated that LPS-induced mitogen-activated protein kinase activation is down-regulated by phosphatidylinositol 3-kinase through the activation of Akt. Our observation that Akt activation is basally enhanced in PTEN(-/-) cells suggests that PTEN supports TLR4-induced inflammatory responses by suppressing the activation of Akt. Thus, we conclude that PTEN is a negative regulator of Fc gamma R signaling, but a positive regulator of TLR4 signaling. These findings are the first to demonstrate a role for PTEN in Fc gamma R- and TLR4-mediated macrophage inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号