首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  完全免费   1篇
  2001年   5篇
  2000年   12篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1971年   2篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
Taxol, an antitumor agent derived from a plant, mimics the action of lipopolysaccharide (LPS) in mice but not in humans. Although Taxol is structurally unrelated to LPS, Taxol and LPS are presumed to share a receptor or signaling molecule. The LPS-mimetic activity of Taxol is not observed in LPS-hyporesponsive C3H/HeJ mice, which possess a point mutation in Toll-like receptor 4 (TLR4); therefore, TLR4 appears to be involved in both Taxol and LPS signaling. In addition, TLR4 was recently shown to physically associate with MD-2, a molecule that confers LPS responsiveness on TLR4. To determine whether TLR4.MD-2 complex mediates a Taxol-induced signal, we constructed transformants of the mouse pro-B cell line, Ba/F3, expressing mouse TLR4 alone, both mouse TLR4 and mouse MD-2, and both mouse MD-2 and mouse TLR4 lacking the cytoplasmic portion, and then examined whether Taxol induced NFkappaB activation in these transfectants. Noticeable NFkappaB activation by Taxol was detected in Ba/F3 expressing mouse TLR4 and mouse MD-2 but not in the other transfectants. Coexpression of human TLR4 and human MD-2 did not confer Taxol responsiveness on Ba/F3 cells, suggesting that the TLR4. MD-2 complex is responsible for the species specificity with respect to Taxol responsiveness. Furthermore, Taxol-induced NFkappaB activation via TLR4.MD-2 was blocked by an LPS antagonist that blocks LPS-induced NFkappaB activation via TLR4.MD-2. These results demonstrated that coexpression of mouse TLR4 and mouse MD-2 is required for Taxol responsiveness and that the TLR4.MD-2 complex is the shared molecule in Taxol and LPS signal transduction in mice.  相似文献
2.
The complex consisting of Toll-like receptor 4 (TLR4) and associated MD-2 signals the presence of lipopolysaccharide (LPS) when it is expressed in cell lines. We here show that normal human mononuclear cells express TLR4 and signal LPS via TLR4. CD14 is a molecule that binds to LPS and facilitates its signaling. Little is known, however, about the relationship of CD14 with TLR4-MD-2. We show that CD14 helps TLR4-MD-2 to sense and signal the presence of LPS. CD14 has also been implicated in recognition of apoptotic cells, which leads to phagocytosis without activation. Membrane phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PtdIns) are thought to serve as the ligands for CD14 in apoptotic cells. We find that PtdIns acts as an LPS antagonist in the signaling via TLR4-MD-2. TLR4-MD-2 seems to discriminate LPS from phospholipids. The signaling via TLR4-MD-2 is thus regulated by CD14 and phospholipid such as PtdIns.  相似文献
3.
We have developed a new selection procedure for mammalian cell mutants defective in protein export by the use of diphtheria toxin, and devised a new screening method for defective protein secretion using nitrocellulose membranes. By the combination of these procedures, we have isolated a temperature-sensitive mutant clone of Chinese hamster ovary cells which shows a pleiotropic defect in protein export. This mutant, designated DS28-6, is temperature-sensitive for growth. Secretion of a series of proteins is markedly inhibited at the non-permissive temperature. These proteins seem to be normally synthesized and accumulated within the cell at the non-permissive temperature and secreted upon shift down to the permissive temperature. When this mutant is infected with vesicular stomatitis virus, oligosaccharide processing of G-protein is arrested at an endoglycosidase-H-sensitive stage at the non-permissive temperature. The lesion of this mutant appears to be in the endoplasmic reticulum or the cis Golgi or both.  相似文献
4.
Three hyperthermophilic sulfur-dependent heterotrophs were isolated from a shallow submarine hydrothermal system at an inlet of Kodakara-jima island, Kagoshima, Japan. The isolates grew at 60 to 97 degrees C, with the optimum temperatures at 85 to 90 degrees C. Sensitivity to rifampin and the existence of ether lipids indicated that the isolates are hyperthermophilic archaea. Partial sequencing of the genes coding for 16S rRNA showed that the three isolates are closely related to the genus Thermococcus. They grew on proteinaceous mixtures, such as yeast extract, Casamino Acids, and purified proteins (e.g., casein and gelatin), but not on carbohydrates or organic acids as sole carbon and energy sources. Nine amino acids were essential for growth of isolate KS-1 (Thr, Leu, Ile, Val, Met, Phe, His, Tyr, and Arg). Isolate KS-2 required Lys in addition to the nine amino acids, and KS-8 required Lys instead of Tyr. In comparative studies, it was shown that Thermococcus celer DSM 2476 required 10 amino acids (Thr, Leu, Ile, Val, Met, Phe, Tyr, Trp, Lys, and Arg) while Pyrococcus furiosus DSM 3638 required only Ile and Val. The hyperthermophilic fermentative eubacterium Thermotoga neapolitana DSM 4359 did not require any amino acids for growth.  相似文献
5.
MD-2 associates with the extracellular domain of Toll-like receptor 4 (TLR4) and greatly enhances LPS signaling via TLR4. Taxol, which mimics the action of LPS on murine macrophages, induces signals via mouse TLR4-MD-2, but not via human TLR4-MD-2. Here we investigated the molecular basis for this species-specific action of Taxol. Expression of mouse MD-2 conferred both LPS and Taxol responsiveness on human embryonic kidney 293 cells expressing mouse TLR4, whereas expression of human MD-2 conferred LPS responsiveness alone, suggesting that MD-2 is responsible for the species-specificity as to Taxol responsiveness. Furthermore, mouse MD-2 mutants, in which Gln(22) was changed to other amino acids, showed dramatically reduced ability to confer Taxol responsiveness, although their ability to confer LPS responsiveness was not affected. These results indicated that Gln(22) of mouse MD-2 is essential for Taxol signaling but not for LPS signaling.  相似文献
6.
Chlamydia trachomatis , an important cause of human disease, is an obligate intracellular bacterial pathogen that relies on the eukaryotic host cell for its replication. Recent reports have revealed that the C. trachomatis vacuole receives host-derived sphingolipids by fusing with trans -Golgi network (TGN)-derived secretory vesicles. Here, it is shown that these lipids are required for the growth of the bacteria. C. trachomatis was unable to replicate at 39°C in the Chinese hamster ovary (CHO)-derived cell line SPB-1, a cell line incapable of synthesizing sphingolipids at this temperature because of a temperature-sensitive mutation in the serine palmitoyltransferase (SPT) gene. Complementation with the wild-type SPT gene or addition of exogenous cell-permeable sphingolipid precursors to the mutant cells restored their ability to support chlamydial replication. l -cycloserine ( l -CS) and fumonisin B1 (FB1), inhibitors of sphingolipid biosynthesis, decreased the proliferation of the bacteria in eukaryotic cells at concentrations that also decreased host cell sphingolipid synthesis. In the case of FB1, the vacuoles appeared aberrant; the addition of sphingolipid precursors was able to reverse the altered morphology of the FB1-treated vacuoles. Collectively, these data strongly suggest that the growth and replication of chlamydiae is dependent on synthesis of sphingolipids by the eukaryotic host cell and may contribute to this organism's obligate intracellular parasitism.  相似文献
7.
We have previously described the chemoattraction of lymphoblasts by lysophosphatidylcholine [Hoffman, R. D., et al. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3285-3289]. In studying the mechanism of chemoattraction it was found that lysophosphatidylcholine was metabolized to 1,2-diacylglycerol by the lymphoblastic cell line 6C3HED. One route of metabolism involves the acylation of lysophosphatidylcholine to phosphatidylcholine with subsequent hydrolysis to 1,2-diacylglycerol and phosphocholine by the action of phospholipase C. The increase in cellular 1,2-diacylglycerol was established by metabolic experiments using [14C]glycerol-labeled lysophosphatidylcholine and by mass measurements of 1,2-diacylglycerol. The presence of a phosphatidylcholine-hydrolyzing phospholipase C was confirmed in 6C3HED cell homogenates. In intact cells, lysophosphatidylcholine induced a pattern of protein phosphorylation similar to those of 1,2-dioctanoylglycerol and phorbol 12-myristate 13-acetate, two known activators of protein kinase C. This pathway of lysophosphatidylcholine metabolism, which involves a phosphatidylcholine-hydrolyzing phospholipase C, may be important in the activation of protein kinase C independent of inositol phospholipid hydrolysis.  相似文献
8.
We have developed a rapid autoradiographic colony assay for detecting mutants with elevated levels of certain biosynthetic enzymes. Four Escherichia coli strains in which the specific activity of the membrane enzyme diglyceride kinase is increased 5-10-fold have been obtained with this approach. The mutant kinase has the same thermal denaturation profile and subcellular localization as the wild type. Five other membrane enzymes involved in phospholipid bilayer assembly are unaffected. In one of these strains (GK-1) the mutation (dgkR-1) responsible for the elevated kinase has been mapped at a new site near minute 92, while the previously identified structural gene (dgk) lies near minute 90. When the structural gene for the kinase (dgk) is cloned on a multi-copy vector-like ColE1, the kinase can be overproduced 5-10-fold on the basis of gene dosage (Lightner, V. A., Larson, T. J., Tailleur, P., Kantor, G. D., Raetz, C. R. H., Bell, R. M., and Modrich, P. (1980) J. Biol. Chem. 255, 9413-9420). Introduction of such hybrid plasmids into a mutant harboring dgkR-1 leads to a multiplicative (rather than additive) effect, resulting in specific activities of diglyceride kinase that are 35-75-fold higher than normal. These results show that dgkR-1 is a trans-acting mutation and suggest the existence of novel regulatory proteins (or metabolites) that direct the expression of certain membrane enzymes.  相似文献
9.
The distribution of culturable hyperthermophiles was studied in relation to environmental conditions in the Kubiki oil reservoir in Japan, where the temperature was between 50 and 58 degrees C. Dominant hyperthermophilic cocci and rods were isolated and shown to belong to the genera Thermococcus and Thermotoga, respectively, by 16S rDNA analyses. Using the most-probable-number method, we found that hyperthermophilic cocci were widely distributed in several unconnected fault blocks in the Kubiki oil reservoir. In 1996 to 1997, their populations in the production waters from oil wells were 9.2 x 10(3) to 4.6 x 10(4) cells/ml, or 10 to 42% of total cocci. On the other hand, hyperthermophilic rods were found in only one fault block of the reservoir with populations less than 10 cells/ml. Dominant Thermococcus and Thermotoga spp. grew at reservoir temperatures and utilized amino acids and sugars, respectively, as sole carbon sources. While organic carbon was plentiful in the environment, these hyperthermophiles were unable to grow in the formation water due to lack of essential nutrients. Concentrations of some organic and inorganic substances differed among fault blocks, indicating that the movement of formation water between fault blocks was restricted. This finding suggests that the supply of nutrients via fluid current is limited in this subterranean environment and that the organisms are starved in the oil reservoir. Under starved conditions at 50 degrees C, culturable cells of Thermococcus sp. remained around the initial cell density for about 200 days, while those of Thermotoga sp. decreased exponentially to 0. 01% of the initial cell density after incubation for the same period. The difference in survivability between these two hyperthermophiles seems to reflect their populations in the fault blocks. These results indicate that hyperthermophilic cocci and rods adapt to the subterranean environment of the Kubiki oil reservoir by developing an ability to survive under starved conditions.  相似文献
10.
Transport of ceramide synthesized at the endoplasmic reticulum to the Golgi compartment, where sphingomyelin (SM) synthase exists, was reconstituted within semi-intact Chinese hamster ovary cells. When [(3)H]ceramide that had been produced from [(3)H]sphingosine at 15 degrees C in perforated cells was chased at 37 degrees C, [(3)H]ceramide-to-[(3)H]SM conversion occurred in a cytosol-dependent manner. In various aspects (i.e. kinetics, ATP dependence, and temperature dependence), [(3)H]ceramide-to-[(3)H]SM conversion in perforated cells was consistent with that in intact cells. The cytosol from LY-A strain, a Chinese hamster ovary cell mutant defective in endoplasmic reticulum-to-Golgi transport of ceramide, did not support [(3)H]ceramide-to-[(3)H]SM conversion in perforated wild-type cells, whereas the wild-type cytosol rescued the conversion in perforated LY-A cells. Brefeldin A-treated cells, in which the endoplasmic reticulum and the Golgi apparatus were merged, no longer required cytosol for conversion of [(3)H]ceramide to [(3)H]SM. These results indicated that the assay of [(3)H]ceramide-to-[(3)H]SM conversion in semi-intact cells is a faithful in vitro assay for the activity of cytosol-dependent transport of ceramide and that LY-A cells are defective in a cytosolic factor involved in ceramide transport. In addition, conversion of [(3)H]ceramide to [(3)H]glucosylceramide in semi-intact cells was little dependent on cytosol, suggesting that ceramide reached the site of glucosylceramide synthesis by a cytosol-independent (or less dependent) pathway.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号