首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  2000年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The human MD-2 molecule is associated with the extracellular domain of human Toll-like receptor 4 (TLR4) and greatly enhances its LPS signaling. The human TLR4-MD-2 complex thus signals the presence of LPS. Little is known, however, about cell surface expression and LPS signaling of the TLR4-MD-2 complex in vivo. We cloned mouse MD-2 molecularly and established a unique mAb MTS510, which reacted selectively with mouse TLR4-MD-2 but not with TLR4 alone in flow cytometry. Mouse MD-2 expression in TLR4-expressing cells enhanced LPS-induced NF-kappaB activation, which was clearly inhibited by MTS510. Thioglycolate-elicited peritoneal macrophages expressed TLR4-MD-2, which was rapidly down-regulated in the presence of LPS. Moreover, LPS-induced TNF-alpha production by peritoneal macrophages was inhibited by MTS510. Collectively, the TLR4-MD-2 complex is expressed on macrophages in vivo and senses and signals the presence of LPS.  相似文献
2.
Taxol, an antitumor agent derived from a plant, mimics the action of lipopolysaccharide (LPS) in mice but not in humans. Although Taxol is structurally unrelated to LPS, Taxol and LPS are presumed to share a receptor or signaling molecule. The LPS-mimetic activity of Taxol is not observed in LPS-hyporesponsive C3H/HeJ mice, which possess a point mutation in Toll-like receptor 4 (TLR4); therefore, TLR4 appears to be involved in both Taxol and LPS signaling. In addition, TLR4 was recently shown to physically associate with MD-2, a molecule that confers LPS responsiveness on TLR4. To determine whether TLR4.MD-2 complex mediates a Taxol-induced signal, we constructed transformants of the mouse pro-B cell line, Ba/F3, expressing mouse TLR4 alone, both mouse TLR4 and mouse MD-2, and both mouse MD-2 and mouse TLR4 lacking the cytoplasmic portion, and then examined whether Taxol induced NFkappaB activation in these transfectants. Noticeable NFkappaB activation by Taxol was detected in Ba/F3 expressing mouse TLR4 and mouse MD-2 but not in the other transfectants. Coexpression of human TLR4 and human MD-2 did not confer Taxol responsiveness on Ba/F3 cells, suggesting that the TLR4. MD-2 complex is responsible for the species specificity with respect to Taxol responsiveness. Furthermore, Taxol-induced NFkappaB activation via TLR4.MD-2 was blocked by an LPS antagonist that blocks LPS-induced NFkappaB activation via TLR4.MD-2. These results demonstrated that coexpression of mouse TLR4 and mouse MD-2 is required for Taxol responsiveness and that the TLR4.MD-2 complex is the shared molecule in Taxol and LPS signal transduction in mice.  相似文献
3.
The complex consisting of Toll-like receptor 4 (TLR4) and associated MD-2 signals the presence of lipopolysaccharide (LPS) when it is expressed in cell lines. We here show that normal human mononuclear cells express TLR4 and signal LPS via TLR4. CD14 is a molecule that binds to LPS and facilitates its signaling. Little is known, however, about the relationship of CD14 with TLR4-MD-2. We show that CD14 helps TLR4-MD-2 to sense and signal the presence of LPS. CD14 has also been implicated in recognition of apoptotic cells, which leads to phagocytosis without activation. Membrane phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PtdIns) are thought to serve as the ligands for CD14 in apoptotic cells. We find that PtdIns acts as an LPS antagonist in the signaling via TLR4-MD-2. TLR4-MD-2 seems to discriminate LPS from phospholipids. The signaling via TLR4-MD-2 is thus regulated by CD14 and phospholipid such as PtdIns.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号