首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  国内免费   1篇
  完全免费   37篇
  2018年   5篇
  2017年   1篇
  2016年   9篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   22篇
  2011年   23篇
  2010年   13篇
  2009年   14篇
  2008年   25篇
  2007年   19篇
  2006年   25篇
  2005年   26篇
  2004年   20篇
  2003年   16篇
  2002年   19篇
  2001年   9篇
  2000年   22篇
  1999年   15篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1973年   1篇
  1965年   1篇
排序方式: 共有374条查询结果,搜索用时 31 毫秒
1.
Mouse development and cell proliferation in the absence of D-cyclins   总被引:40,自引:0,他引:40  
D-type cyclins (cyclins D1, D2, and D3) are regarded as essential links between cell environment and the core cell cycle machinery. We tested the requirement for D-cyclins in mouse development and in proliferation by generating mice lacking all D-cyclins. We found that these cyclin D1(-/-)D2(-/-)D3(-/-) mice develop until mid/late gestation and die due to heart abnormalities combined with a severe anemia. Our analyses revealed that the D-cyclins are critically required for the expansion of hematopoietic stem cells. In contrast, cyclin D-deficient fibroblasts proliferate nearly normally but show increased requirement for mitogenic stimulation in cell cycle re-entry. We found that the proliferation of cyclin D1(-/-)D2(-/-)D3(-/-) cells is resistant to the inhibition by p16(INK4a), but it critically depends on CDK2. Lastly, we found that cells lacking D-cyclins display reduced susceptibility to the oncogenic transformation. Our results reveal the presence of alternative mechanisms that allow cell cycle progression in a cyclin D-independent fashion.  相似文献
2.
Monocytes/macrophages exposed to LPS show reduced responses to second stimulation with LPS, which is termed LPS tolerance. In this study, we investigated molecular mechanism of LPS tolerance in macrophages. Mouse peritoneal macrophages pre-exposed to LPS exhibited reduced production of inflammatory cytokines in a time- and dose-dependent manner. Activation of neither IL-1 receptor-associated kinase nor NF-kappaB was observed in macrophages that became tolerant by LPS pretreatment, indicating that the proximal event in Toll-like receptor 4 (TLR4)-MyD88-dependent signaling is affected in tolerant macrophages. Although TLR4 mRNA expression significantly decreased within a few hours of LPS pretreatment and returned to the original level at 24 h, the surface TLR4 expression began to decrease within 1 h, with a gradual decrease after that, and remained suppressed over 24 h. A decrease in inflammatory cytokine production in tolerant macrophages well correlates with down-regulation of the surface TLR4 expression, which may explain one of the mechanisms for LPS tolerance.  相似文献
3.
Gene expression and molecular evolution   总被引:32,自引:0,他引:32  
The combination of complete genome sequence information and estimates of mRNA abundances have begun to reveal causes of both silent and protein sequence evolution. Translational selection appears to explain patterns of synonymous codon usage in many prokaryotes as well as a number of eukaryotic model organisms (with the notable exception of vertebrates). Relationships between gene length and codon usage bias, however, remain unexplained. Intriguing correlations between expression patterns and protein divergence suggest some general mechanisms underlying protein evolution.  相似文献
4.
The human MD-2 molecule is associated with the extracellular domain of human Toll-like receptor 4 (TLR4) and greatly enhances its LPS signaling. The human TLR4-MD-2 complex thus signals the presence of LPS. Little is known, however, about cell surface expression and LPS signaling of the TLR4-MD-2 complex in vivo. We cloned mouse MD-2 molecularly and established a unique mAb MTS510, which reacted selectively with mouse TLR4-MD-2 but not with TLR4 alone in flow cytometry. Mouse MD-2 expression in TLR4-expressing cells enhanced LPS-induced NF-kappaB activation, which was clearly inhibited by MTS510. Thioglycolate-elicited peritoneal macrophages expressed TLR4-MD-2, which was rapidly down-regulated in the presence of LPS. Moreover, LPS-induced TNF-alpha production by peritoneal macrophages was inhibited by MTS510. Collectively, the TLR4-MD-2 complex is expressed on macrophages in vivo and senses and signals the presence of LPS.  相似文献
5.
Translational selection and yeast proteome evolution   总被引:26,自引:0,他引:26  
Akashi H 《Genetics》2003,164(4):1291-1303
6.
Gastric intestinal metaplasia occurs as a pathological condition in the gastric mucosa. To clarify how an intestine-specific homeobox gene, Cdx2, affects the morphogenesis of gastric mucosa, we generated transgenic mice expressing Cdx2 in parietal cells. Until Day 18 after birth, the number of parietal cells inthegastric mucosa of transgenic mice was the same as for their normal littermates. However, at Day 19, we detected several glands in which parietal cells disappeared and the proliferating zone moved from the isthmus to the base of the glands. Thereafter, parietal cells decreased gradually and disappeared at Day 37. All of the gastric mucosal cells, except for enterochromaffin-like (ECL) cells, were completely replaced by intestinal metaplasia, consisting of goblet cells, enteroendocrine cells, and absorptive cells expressing alkaline phosphatase. Pseudopyloric gland metaplasia was also formed. The transgenic mouse is a very useful model for clarifying physiological differentiation of gastric and intestinal cell lineages and analyzing the molecular events from intestinal metaplasia to adenocarcinoma.  相似文献
7.
Taxol, an antitumor agent derived from a plant, mimics the action of lipopolysaccharide (LPS) in mice but not in humans. Although Taxol is structurally unrelated to LPS, Taxol and LPS are presumed to share a receptor or signaling molecule. The LPS-mimetic activity of Taxol is not observed in LPS-hyporesponsive C3H/HeJ mice, which possess a point mutation in Toll-like receptor 4 (TLR4); therefore, TLR4 appears to be involved in both Taxol and LPS signaling. In addition, TLR4 was recently shown to physically associate with MD-2, a molecule that confers LPS responsiveness on TLR4. To determine whether TLR4.MD-2 complex mediates a Taxol-induced signal, we constructed transformants of the mouse pro-B cell line, Ba/F3, expressing mouse TLR4 alone, both mouse TLR4 and mouse MD-2, and both mouse MD-2 and mouse TLR4 lacking the cytoplasmic portion, and then examined whether Taxol induced NFkappaB activation in these transfectants. Noticeable NFkappaB activation by Taxol was detected in Ba/F3 expressing mouse TLR4 and mouse MD-2 but not in the other transfectants. Coexpression of human TLR4 and human MD-2 did not confer Taxol responsiveness on Ba/F3 cells, suggesting that the TLR4. MD-2 complex is responsible for the species specificity with respect to Taxol responsiveness. Furthermore, Taxol-induced NFkappaB activation via TLR4.MD-2 was blocked by an LPS antagonist that blocks LPS-induced NFkappaB activation via TLR4.MD-2. These results demonstrated that coexpression of mouse TLR4 and mouse MD-2 is required for Taxol responsiveness and that the TLR4.MD-2 complex is the shared molecule in Taxol and LPS signal transduction in mice.  相似文献
8.
Analysis of the mitochondrial DNA of a liverwort Marchantia polymorpha by electron microscopy and restriction endonuclease mapping indicated that the liverwort mitochondrial genome was a single circular molecule of about 184,400 base-pairs. We have determined the complete sequence of the liverwort mitochondrial DNA and detected 94 possible genes in the sequence of 186,608 base-pairs. These included genes for three species of ribosomal RNA, 29 genes for 27 species of transfer RNA and 30 open reading frames (ORFs) for functionally known proteins (16 ribosomal proteins, 3 subunits of H(+)-ATPase, 3 subunits of cytochrome c oxidase, apocytochrome b protein and 7 subunits of NADH ubiquinone oxidoreductase). Three ORFs showed similarity to ORFs of unknown function in the mitochondrial genomes of other organisms. Furthermore, 29 ORFs were predicted as possible genes by using the index of G + C content in first, second and third letters of codons (42.0 +/- 10.9%, 37.0 +/- 13.2% and 26.4 +/- 9.4%, respectively) obtained from the codon usages of identified liverwort genes. To date, 32 introns belonging to either group I or group II intron have been found in the coding regions of 17 genes including ribosomal RNA genes (rrn18 and rrn26), a transfer RNA gene (trnS) and a pseudogene (psi nad7). RNA editing was apparently lacking in liverwort mitochondria since the nucleotide sequences of the liverwort mitochondrial DNA were well-conserved at the DNA level.  相似文献
9.
10.
Eukaryotic cells are divided into multiple membrane-bound compartments, all of which contain proteins. A large subset of these proteins perform functions that are required in more than one compartment. Although in most cases proteins carrying out the same function in different compartments are encoded by different genes, this is not always true. Numerous examples have now been found where a single gene encodes proteins (or RNAs) found in two (or more) cell organelles or membrane systems. Some particularly clear examples come from protein synthesis itself: plant cells contain three protein-synthesizing compartments, the cytosol, the mitochondrial matrix and the plastid stroma. All three compartments thus require tRNAs and aminoacyl-tRNA synthetases. Some mitochondrial tRNAs and their aminoacyl-tRNA synthetases are identical to their cytosolic counterparts and they are encoded by the same genes. Similarly, some mitochondrial and plastid aminoacyl-tRNA synthetases are encoded by the same nuclear genes. The various ways in which differentially targeted products can be generated from single genes is discussed.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号