首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
CCR5Δ32/Δ32(C C chemokine receptor type 5,CCR5)基因型的骨髓干细胞移植,可以治愈感染人免疫缺陷病毒-1(HIV-1)的患者。本研究运用TALENs结合同源重组技术产生纯合子的CCR5△32/△32突变,并赋予CD4+ U87 细胞抵抗HIV-1感染的能力。首先,采用重叠延伸PCR合成 CCR5△32 donor DNA。构建CCR5-TALENs 和CCR5△1-TALENs质粒,将CCR5-TALENs 及CCR5△1-TALENs质粒分别结合CCR5△32 donor DNA,共转染野生型CD4+ U87 细胞。其次,用T7E1酶切分析转染后的TALENs和CCR5△1-TALENs打靶效率。通过单克隆培养筛选CCR5△32/△32突变的单克隆细胞。最后,将CCR5△32/△32 CD4+ U87 细胞和野生型CD4+ U87细胞进行Bal HIV-1病毒攻击实验,采用ELISA方法检测上清中P24抗原含量。测序结果表明,通过重叠延伸PCR成功获得1 602 bp CCR5△32 donor DNA;CCR5-TALENs 质粒第1轮、第2轮和第3轮转染,打靶效率分别为14.80%, 38.20%和50.40%;从29个单个细胞培养的克隆中成功筛选出1个CCR5△32/△1基因型CD4+ U87细胞,CCR5与CCR5△32 donor DNA之间同源重组效率为1.7%; CCR5△1-TALEN质粒第2轮转染,打靶效率为23.5%,从34个单细胞培养的克隆中筛选出3个CCR5△32/△32 基因型CD4+ U87细胞,CCR5与CCR5△32 donor DNA之间同源重组效率达到8.8%。Bal HIV-1攻击实验表明,野生型CD4+ U87细胞培养上清第2、4、6、8、10、12 d,平均P24抗原含量分别为58.47±2.35、162.23±4.78、458.78±27.34、613.35±26.78、580.35±24.73、483.34±30.85 pg/mL。而CCR5△32/△32基因型CD4+ U87细胞的培养上清平均P24抗原含量分别为11.30±1.76、5.13±0.88、3.43±0.44、3.84±0.69、3.21±0.44、4.24±0.46 pg/mL。本研究表明,TALENs 结合同源重组技术无缝隙地介导了CCR5△32/△32突变,并赋予了CD4+ U87细胞抵抗HIV-1感染的能力。  相似文献   

2.
趋化因子受体 CCR5 亲合短肽的筛选   总被引:4,自引:0,他引:4  
趋化因子受体 5 (CCR5) 是 HIV-1 与宿主细胞结合的辅助因子之一,其功能缺失或被 CCR5 拮抗剂封闭则会阻止 HIV-1 感染细胞 . 为得到与 CCR5 特异结合的肽类拮抗剂,采用噬菌体展示技术,以稳定表达 CCR5 的 CHO 细胞 (CHO/CCR5) 作为靶标,通过噬菌体随机 12 肽库筛选与 CCR5 特异结合的多肽;经过四轮筛选后,挑选 20 个阳性噬菌体克隆进行测序,从中得到 11 个含有 AFDWTFVPSLIL 序列的小分子肽 . 含该序列的噬菌体能与抗人 CCR5 单抗 (2D7) 竞争性结合 CCR5 ,且合成肽 AFDWTFVPSLIL 对趋化因子 RANTES 与 CHO/CCR5 的结合具有明显的抑制作用,初步证明该小肽与 CCR5 具有特异性结合作用 .  相似文献   

3.
含人CCR5Delta32基因重组慢病毒的包装及滴度测定   总被引:2,自引:2,他引:0  
目的:包装含人CCR5Delta32基因的重组慢病毒并测定其滴度,用于获得性免疫缺陷综合征(AIDS)的基因治疗研究。方法:从CCR5Deha32突变个体外周血单个核细胞(PBMC)中提取人基因组DNA,利用PCR技术扩增CCR5Deha32全长基因,经EcoRI单酶切后与pUCm—T载体连接,随后转化EcoliDH5ct,提取质粒进行酶切鉴定及DNA测序;将鉴定正确的CCR5Delta32基因亚克隆至慢病毒载体pLenti6/V5-D-TOPO并进行酶切鉴定及DNA序列分析;用pLP1、pLP2、pLP/VSVG及pLenti-CCR5Delta32等4种质粒共转染293T细胞,产生重组慢病毒并测定其滴度。结果:克隆出人CCR5Deha32基因,并构建了含该基因的重组慢病毒载体,经293T细胞包装后产生5×10^5TU/mL的重组慢病毒。结论:高滴度含人CCR5Deha32基因重组慢病毒的包装,为进一步的AIDS基因治疗研究奠定了基础。  相似文献   

4.
探讨HIV-1感染宿主细胞后对其宿主蛋白肿瘤易感基因101蛋白(Tumor Susceptibility Gene 101,TSG101)及ALG-2相互作用蛋白X(ALG-2-interacting protein X,Alix)表达的影响。以HIV-1感染性克隆病毒pNL4-3感染TZM-bl PM1、Jurkat细胞株和人外周血单个核细胞(PBMCs),感染24h后收获细胞提取总RNA,逆转录PCR检测在RNA水平各因子的表达差异;感染48h后收获细胞提取总蛋白,Western-blot检测各因子在蛋白水平的表达差异。结果显示:HIV-1感染对原代PBMC与细胞系表达Alix与TSG101影响显著不同,细胞系主要表现为下调,而原代PBMC主要表现为TSG101上调;细胞系中的下调又细分为Jurkat细胞的Alix与TSG101的双下调、TZM-bl细胞的Alix单下调以及PM1细胞无影响三种情况。HIV-1感染对细胞宿主分子TSG101及Alix在RNA和蛋白水平的表达均有影响,这种影响因细胞的不同而有差异。HIV-1感染调节Alix与TSG101的机制生物学意义尚有待于进一步阐明。  相似文献   

5.
HIV-1的表型及其感染的细胞嗜性   总被引:2,自引:0,他引:2  
张驰宇 《动物学研究》2004,25(4):363-368
HIV-1的表型分为合胞体诱导型(syncytium-inducing,SI)和非合胞体诱导型(non-syncytium-inducing,NSI)。依据所用辅助受体和感染靶细胞的不同,HIV-1又被分为R5、X4和R5X4型。R5和X4型病毒分别利用CCR5和CXCR4作为辅助受体,而R5X4型病毒可利用这两种辅助受体。在病毒的复制力、细胞嗜性以及合胞体诱导能力上,SI型与X4型病毒一致,NSI型与R5型病毒一致。在HIV-1感染过程中,疾病的发展伴随着病毒从NSI型向SI型、及R5型向X4型的转变。HIV-1的表型影响和决定着HIV-1的感染、传播及AIDS的疾病进程。HIV-1的表型和细胞嗜性主要由病毒gp120的V3区(特别是第11和25位的氨基酸)决定。V3区的氨基酸序列信息,将为预测HIV-1的表型,以及病毒感染后的疾病进程提供生物信息学的依据。  相似文献   

6.
自从发现人类免疫缺陷病毒1型(HIV-1)是引起获得性免疫缺陷综合征(AIDS)的病原体后,人们对HIV-1与人体相互作用的过程进行了深入研究.通过研究发现了HIV-1与机体相互作用的多种机制,例如HIV-1主要侵犯人体以CD4 T细胞为主的表达其结合表位(如CCR5和CXCR4)的免疫活性细胞[1].目前研究者在正常机体内发现多种物质与HIV-1致病有关.例如APOBEC蛋白(人体内主要为APOBEC3G),当HIV-1侵入机体后,该蛋白表达减少,这一过程在HIV-1的致病过程中发挥重要作用.通过对这些蛋白或分子的研究,进一步揭示了HIV-1的致病机制,为治疗HIV感染/AIDS提供了新思路.同时不同的HIV-1感染细胞模型的构建为AIDS的研究提供了多种工具.  相似文献   

7.
目的 研究中国人群CCR5基因开放阅读框架(ORF)区突变并分析其对中国人人类免疫缺陷病毒(HIV)传播和致病的影响。方法 研究对象为居住在香港特区的1099名成年中国人,其中785名为HIV阴性健康人,314例为确诊HIV感染的患者。首先对CCR5 ORF进行测序,确定并分析CCR5突变在人群的分布。再对突变G106R、Δ32、R223Q、299(FS)和S3361体外克隆,研究其表达及作为HIV辅助受体功能的改变。结果 在CCR5 ORF共检测到10个突变位点。其中7个为有意义突变;突变R223Q是发生频率最高的突变,在正常人是4.7%,在HIV感染者是4.5%;其余CCR5 ORF突变发生频率均<1%; R223Q位于CCR5膜内区,不影响其作为HIV辅助受体的功能;S336I位于CCR5的C端,同样不影响其功能;突变G106R位于CCR5第3跨膜区,实验显示其辅助受体功能受到明显影响。结论 CCR5 ORF突变在中国人群较为常见,一些突变明显影响其作为HIV辅助受体的功能,但在流行病学范围内对HIV感染及致病的影响不明显。  相似文献   

8.
趋化因子受体如CCR5和CXCR4是HIV侵入细胞的辅助受体,趋化因子与其受体的结合可以抑制HIV感染细胞.近年来在疱疹病毒8(Human herpesvirus 8, HHV8)基因组中发现与人趋化因子有较高同源性的开放阅读框,分别命名为vMIP1、vMIP2和vMIP3.研究发现vMIP2与多种人趋化因子受体有高亲和力.本研究在大肠杆菌中表达出融合蛋白TrxA- vMIP2,用亲和层析的方法对其纯化.纯化产物用肠激酶酶切后,经离子交换层析纯化出目的蛋白vMIP2.体外活性研究表明纯化的vMIP2 可以有效地抑制R5和X4 HIV-1在人外周血单核细胞上的复制.  相似文献   

9.
1995年,Cocchi等[1]发现RANTES、MIP-1α和MIP-1β等β-趋化因子具有抗HIV-1感染活性.1997年,Feng等[2]和Deng等[3]证实β-趋化因子受体CXCR4和CCR5分别是HIV-1侵染T淋巴细胞和巨噬细胞的辅助受体(co-receptor).T淋巴细胞嗜性(T-tropism)分离株被称为X4毒株,巨噬细胞嗜性(M-tropism)分离株则被称为R5毒株[4].RANTES与CCR5有着高度的亲和力,二者的结合可对HIV-1的细胞附着产生空间位阻效应,并下调CCR5在细胞表面的表达.这一结果使RANTES抗HIV-1感染机制在分子水平上得到合理的解释.最近,Garzino-Demo等[5]证明,β-趋化因子的诱导分泌与HIV-1感染后疾病进程的控制有着密切的关系,而且人群中β-趋化因子水平存在着显著的个体差异,表明β-趋化因子对艾滋病具有潜在的预防和治疗价值.为此,我们在克隆人RAN-TES基因的基础上,在体外转录与翻译系统中实现了该基因的表达,有利于今后进一步开展艾滋病的基因治疗.  相似文献   

10.
11.
We investigated the occurrence of the CCR5Delta32 mutation in various regional ethnic groups in Brazil and tested the resistance of mutant peripheral blood mononuclear cells (PBMCs) to infection by HIV-1 in vitro. The heterozygous prevalence was 5.3% in uninfected African descendents and 8.8% in HIV-1-positive individuals (neither population had Delta32/Delta32). German descendents were 11% heterozygous and l% Delta32/Delta32. Amerindians were exclusively CCR5/CCR5. Heterozygous uninfected PBMCs showed partial resistance to R5-HIV-1 strains in vitro, but no resistance to X4 virus. HIV-1-positive CCR5/CCR5 had higher viral loads than did heterozygous cells.  相似文献   

12.
CCR5Delta32 is a loss-of-function mutation that abolishes cell surface expression of the human immunodeficiency virus (HIV) coreceptor CCR5 and provides genetic resistance to HIV infection and disease progression. Since CXCR4 and other HIV coreceptors also exist, we hypothesized that CCR5Delta32-mediated resistance may be due not only to the loss of CCR5 function but also to a gain-of-function mechanism, specifically the active inhibition of alternative coreceptors by the mutant CCR5Delta32 protein. Here we demonstrate that efficient expression of the CCR5Delta32 protein in primary CD4(+) cells by use of a recombinant adenovirus (Ad5/Delta32) was able to down-regulate surface expression of both wild-type CCR5 and CXCR4 and to confer broad resistance to R5, R5X4, and X4 HIV type 1 (HIV-1). This may be important clinically, since we found that CD4(+) cells purified from peripheral blood mononuclear cells of individuals who were homozygous for CCR5Delta32, which expressed the mutant protein endogenously, consistently expressed lower levels of CXCR4 and showed less susceptibility to X4 HIV-1 isolates than cells from individuals lacking the mutation. Moreover, CD4(+) cells from individuals who were homozygous for CCR5Delta32 expressed the mutant protein in five of five HIV-exposed, uninfected donors tested but not in either of two HIV-infected donors tested. The mechanism of inhibition may involve direct scavenging, since we were able to observe a direct interaction of CCR5 and CXCR4 with CCR5Delta32, both by genetic criteria using the yeast two-hybrid system and by biochemical criteria using the coimmunoprecipitation of heterodimers. Thus, these results suggest that at least two distinct mechanisms may account for genetic resistance to HIV conferred by CCR5Delta32: the loss of wild-type CCR5 surface expression and the generation of CCR5Delta32 protein, which functions as a scavenger of both CCR5 and CXCR4.  相似文献   

13.
The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4(+)-transformed cells or pharmacological inhibition of G(alpha)i proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. Using lentiviral vectors, we restored CCR5 expression in T lymphocytes and macrophages from individuals carrying the homozygous 32-bp deletion of the CCR5 gene (ccr5 Delta32/Delta32). Expression of wild-type (wt) CCR5 in ccr5 Delta32/Delta32 cells permitted infection by R5 HIV isolates. We assessed the capacity of a CCR5 derivative carrying a mutated DRY motif (CCR5-R126N) in the second intracellular loop to work as an HIV-1 coreceptor. The R126N mutation is known to disable G protein coupling and agonist-induced signal transduction through CCR5 and other G protein-coupled receptors. Despite its inability to promote either intracellular calcium mobilization or cell chemotaxis, the inactive CCR5-R126N mutant provided full coreceptor function to several R5 HIV-1 isolates in primary cells as efficiently as wt CCR5. We conclude that in a primary, CCR5-reconstituted CD4(+) cell environment, G protein signaling is dispensable for R5 HIV-1 isolates to actively infect primary CD4(+) T lymphocytes or macrophages.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infection of individuals carrying the two alleles of the CCR5Delta32 mutation (CCR5(-/-)) has rarely been reported, but how the virus overcomes the CCR5Delta32 protective effect in these cases has not been delineated. We have investigated this in 6 infected (HIV(+)) and 25 HIV(-) CCR5(-/-) individuals. CD4(+) T lymphocytes isolated from HIV(-) CCR5(-/-) peripheral blood mononuclear cells (PBMCs) showed lower levels of CXCR4 expression that correlated with lower X4 Env-mediated fusion. Endogenous CCR5Delta32 protein was detected in all HIV(-) CCR5(-/-) PBMC samples (n = 25) but not in four of six unrelated HIV(+) CCR5(-/-) PBMC samples. Low levels were detected in another two HIV(+) CCR5(-/-) PBMC samples. The expression of adenovirus 5 (Ad5)-encoded CCR5Delta32 protein restored the protective effect in PBMCs from three HIV(+) CCR5(-/-) individuals but failed to restore the protective effect in PBMCs isolated from another three HIV(+) CCR5(-/-) individuals. In the latter samples, pulse-chase analyses demonstrated the disappearance of endogenous Ad5-encoded CCR5Delta32 protein and the accumulation of Ad5-encoded CCR5 during the chase periods. PBMCs isolated from CCR5(-/-) individuals showed resistance to primary X4 but were readily infected by a lab-adapted X4 strain. Low levels of Ad5-encoded CCR5Delta32 protein conferred resistance to primary X4 but not to lab-adapted X4 virus. These data provide strong support for the hypothesis that the CCR5Delta32 protein actively confers resistance to HIV-1 in vivo and suggest that the loss or reduction of CCR5Delta32 protein expression may account for HIV-1 infection of CCR5(-/-) individuals. The results also suggest that other cellular or virally induced factors may be involved in the stability of CCR5Delta32 protein.  相似文献   

15.
The mechanisms of human immunodeficiency virus (HIV) infection of a man (VH) homozygous for the CCR5Delta32 mutation were investigated, and coreceptors other than CCR5 used by HIV type 1 (HIV-1) isolated from this individual were identified. In contrast to previous reports, this individual's rate of disease progression was not accelerated. Homozygosity for CCR5Delta32 mutation was demonstrated by PCR and DNA sequencing (R. Biti et al., Nat. Med. 3:252-253, 1997). CCR5 surface expression was absent on T lymphocytes and macrophages. HIV was isolated by coculture with peripheral blood mononuclear cells (PBMCs) from siblings who were homozygous (VM) or wild type (WT) for the CCR5Delta32 mutation. The virus demonstrated dual tropism for infection of MT2 cell line and primary macrophages. Sequencing of the full HIV genome directly from the patient's PBMCs revealed 21 nucleotide insertions in the V1 region of gp120. The VH envelope sequence segregated apart from both the T-cell-line-adapted tropic strains NL4-3 and SF2 and M-tropic strain JRFL or YU2 by phylogenetic tree analysis. VH was shown to utilize predominantly CXCR4 for entry into T lymphocytes and macrophages by HOS.CD4 cell infection assay, direct envelope protein fusion, and inhibition by anti-CXCR4 monoclonal antibody (12G5), SDF-1, and AMD3100. Microsatellite mapping demonstrated the separate inheritance of CXCR4 by both homozygote brothers (VH and VM). Our study demonstrates the ability of certain strains of HIV to readily use CXCR4 for infection or entry into macrophages, which is highly relevant to the pathogenesis of late-stage disease and presumably also HIV transmission.  相似文献   

16.
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).  相似文献   

17.
The gastrointestinal mucosa harbors the majority of the body's CD4(+) cells and appears to be uniquely susceptible to human immunodeficiency virus type 1 (HIV-1) infection. We undertook this study to examine the role of differences in chemokine receptor expression on infection of mucosal mononuclear cells (MMCs) and peripheral blood mononuclear cells (PBMCs) by R5- and X4-tropic HIV-1. We performed in vitro infections of MMCs and PBMCs with R5- and X4-tropic HIV-1, engineered to express murine CD24 on the infected cell's surface, allowing for quantification of HIV-infected cells and their phenotypic characterization. A greater percentage of MMCs than PBMCs are infected by both R5- and X4-tropic HIV-1. Significant differences exist in terms of chemokine receptor expression in the blood and gastrointestinal mucosa; mucosal cells are predominantly CCR5(+) CXCR4(+), while these cells make up less than 20% of the peripheral blood cells. It is this cell population that is most susceptible to infection with both R5- and X4-tropic HIV-1 in both compartments. Regardless of whether viral isolates were derived from the blood or mucosa of HIV-1-infected patients, HIV-1 p24 production was greater in MMCs than in PBMCs. Further, the chemokine receptor tropism of these patient-derived viral isolates did not differ between compartments. We conclude that, based on these findings, the gastrointestinal mucosa represents a favored target for HIV-1, in part due to its large population of CXCR4(+) CCR5(+) target cells and not to differences in the virus that it contains.  相似文献   

18.
We studied the replication and cytopathicity in SCID-hu mice of R5 human immunodeficiency virus type 1 (HIV-1) biological clones from early and late stages of infection of three patients who never developed MT-2 cell syncytium-inducing (SI; R5X4 or X4) viruses. Several of the late-stage non-MT-2 cell syncytium-inducing (NSI; R5) viruses from these patients depleted human CD4(+) thymocytes from SCID-hu mice. Earlier clones from the same patients did not deplete CD4(+) thymocytes from SCID-hu mice as well as later clones. We studied three R5 HIV-1 clones from patient ACH142 in greater detail. Two of these clones were obtained prior to the onset of AIDS; the third was obtained following the AIDS diagnosis. In GHOST cell infection assays, all three ACH142 R5 HIV-1 clones could infect GHOST cells expressing CCR5 but not GHOST cells expressing any of nine other HIV coreceptors tested. Furthermore, these patient clones efficiently infected stimulated peripheral blood mononuclear cells from a normal donor but not those from a homozygous CCR5Delta32 individual. Statistical analyses of data obtained from infection of SCID-hu mice with patient ACH142 R5 clones revealed that only the AIDS-associated clone significantly depleted CD4(+) thymocytes from SCID-hu mice. This clone also replicated to higher levels in SCID-hu mice than the two earlier clones, and a significant correlation between viral replication and CD4(+) thymocyte depletion was observed. Our results indicate that an intrinsic property of AIDS-associated R5 patient clones causes their increased replication and cytopathic effects in SCID-hu mice and likely contributes to the development of AIDS in patients who harbor only R5 quasispecies of HIV-1.  相似文献   

19.
Most simian immunodeficiency virus (SIV), human immunodeficiency virus type 2 (HIV-2), and HIV-1 infection of host peripheral blood mononuclear cells (PBMCs) is CD4 dependent. In some cases, X4 HIV-1 chemotaxis is CD4 independent, and cross-species transmission might be facilitated by CD4-independent entry, which has been demonstrated for some SIV strains in CD4(-) non-T cells. As expected for CCR5-dependent virus, SIV required CD4 on rhesus and pigtail macaque PBMCs for infection and chemotaxis. However, SIV induced the chemotaxis of human PBMCs in a CD4-independent manner. Furthermore, in contrast to the results of studies using transfected human cell lines, SIV did not require CD4 binding to productively infect primary human PBMCs. CD4-independent lymphocyte and macrophage infection may facilitate cross-species transmission, while reacquisition of CD4 dependence may confer a selective advantage for the virus within new host species.  相似文献   

20.
The identification of chemokine receptors as HIV-1 coreceptors has focused research on developing strategies to prevent HIV-1 infection. We generated CCR2-01, a CCR2 receptor-specific monoclonal antibody that neither competes with the chemokine CCL2 for binding nor triggers signaling, but nonetheless blocks replication of monotropic (R5) and T-tropic (X4) HIV-1 strains. This effect is explained by the ability of CCR2-01 to induce oligomerization of CCR2 with the CCR5 or CXCR4 viral coreceptors. HIV-1 infection through CCR5 and CXCR4 receptors can thus be prevented in the absence of steric hindrance or receptor downregulation by acting in trans on a receptor that is rarely used by the virus to infect cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号