首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CCR5Delta32 protein expression and stability are critical for resistance to human immunodeficiency virus type 1 in vivo
Authors:Agrawal Lokesh  Jin Qingwen  Altenburg Jeff  Meyer L  Tubiana R  Theodorou Ioannis  Alkhatib Ghalib
Institution:Indiana University School of Medicine, Department of Microbiology and Immunology, 635 Barnhill Drive, Room 420, Indianapolis, IN 46202, USA.
Abstract:Human immunodeficiency virus type 1 (HIV-1) infection of individuals carrying the two alleles of the CCR5Delta32 mutation (CCR5(-/-)) has rarely been reported, but how the virus overcomes the CCR5Delta32 protective effect in these cases has not been delineated. We have investigated this in 6 infected (HIV(+)) and 25 HIV(-) CCR5(-/-) individuals. CD4(+) T lymphocytes isolated from HIV(-) CCR5(-/-) peripheral blood mononuclear cells (PBMCs) showed lower levels of CXCR4 expression that correlated with lower X4 Env-mediated fusion. Endogenous CCR5Delta32 protein was detected in all HIV(-) CCR5(-/-) PBMC samples (n = 25) but not in four of six unrelated HIV(+) CCR5(-/-) PBMC samples. Low levels were detected in another two HIV(+) CCR5(-/-) PBMC samples. The expression of adenovirus 5 (Ad5)-encoded CCR5Delta32 protein restored the protective effect in PBMCs from three HIV(+) CCR5(-/-) individuals but failed to restore the protective effect in PBMCs isolated from another three HIV(+) CCR5(-/-) individuals. In the latter samples, pulse-chase analyses demonstrated the disappearance of endogenous Ad5-encoded CCR5Delta32 protein and the accumulation of Ad5-encoded CCR5 during the chase periods. PBMCs isolated from CCR5(-/-) individuals showed resistance to primary X4 but were readily infected by a lab-adapted X4 strain. Low levels of Ad5-encoded CCR5Delta32 protein conferred resistance to primary X4 but not to lab-adapted X4 virus. These data provide strong support for the hypothesis that the CCR5Delta32 protein actively confers resistance to HIV-1 in vivo and suggest that the loss or reduction of CCR5Delta32 protein expression may account for HIV-1 infection of CCR5(-/-) individuals. The results also suggest that other cellular or virally induced factors may be involved in the stability of CCR5Delta32 protein.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号