首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Lipopolysaccharide is a pathogen that causes inflammatory bone loss. Monocytes and macrophages produce proinflammatory cytokines such as IL-1, TNF-alpha, and IL-6 in response to LPS. We examined the effects of LPS on the function of osteoclasts formed in vitro in comparison with its effect on bone marrow macrophages, osteoclast precursors. Both osteoclasts and bone marrow macrophages expressed mRNA of Toll-like receptor 4 (TLR4) and CD14, components of the LPS receptor system. LPS induced rapid degradation of I-kappaB in osteoclasts, and stimulated the survival of osteoclasts. LPS failed to support the survival of osteoclasts derived from C3H/HeJ mice, which possess a missense mutation in the TLR4 gene. The LPS-promoted survival of osteoclasts was not mediated by any of the cytokines known to prolong the survival of osteoclasts, such as IL-1beta, TNF-alpha, and receptor activator of NF-kappaB ligand. LPS stimulated the production of proinflammatory cytokines such as IL-1beta, TNF-alpha, and IL-6 in bone marrow macrophages and peritoneal macrophages, but not in osteoclasts. These results indicate that osteoclasts respond to LPS through TLR4, but the characteristics of osteoclasts are quite different from those of their precursors, macrophages, in terms of proinflammatory cytokine production in response to LPS.  相似文献   

2.
The expression of inducible antimicrobial peptides, such as human beta-defensin-2 (HBD-2) by epithelia, comprises a component of innate pulmonary defenses. We hypothesized that HBD-2 induction in airway epithelia is linked to pattern recognition receptors such as the Toll-like receptors (TLRs). We found that primary cultures of well-differentiated human airway epithelia express the mRNA for TLR-4, but little or no MD-2 mRNA, and display little HBD-2 expression in response to treatment with purified endotoxin +/- LPS binding protein (LBP) and soluble CD14. Expression of endogenous MD-2 by transduction of airway epithelial cells with an adenoviral vector encoding MD-2 or extracellular addition of recombinant MD-2 both increased the responses of airway epithelia to endotoxin + LBP and sCD14 by >100-fold, as measured by NF-kappaB-luciferase activity and HBD-2 mRNA expression. MD-2 mRNA could be induced in airway epithelia by exposure of these cells to specific bacterial or host products (e.g., killed Haemophilus influenzae, the P6 outer membrane protein from H. influenzae, or TNF-alpha + IFN-gamma). These findings suggest that MD-2, either coexpressed with TLR-4 or secreted when produced in excess of TLR-4 from neighboring cells, is required for airway epithelia to respond sensitively to endotoxin. The regulation of MD-2 expression in airway epithelia and pulmonary macrophages may serve as a means to modify endotoxin responsiveness in the airway.  相似文献   

3.
To address the role played by MD-2 in mast cell recognition of LPS, we examined bone marrow-derived mast cells (BMMCs) from MD-2 gene-targeted mice. BMMCs from MD-2-/- mice showed impaired cytokine production (TNF-alpha, IL-6, IL-13, and IL-1beta) in response to LPS from Escherichia coli, but not to peptidoglycan (PGN) from Staphylococcus aureus. In a mast cell-dependent acute septic model, MD-2 deficiency of mast cell resulted in significantly higher mortality due to defective neutrophil recruitment and the production of cytokines in the peritoneal cavity, which was similar to mice with TLR4-deficient mast cells. The TLR2-dependent activation of skin mast cells by PGN was not altered by the absence of MD-2 in vivo. Collectively, MD-2 is essential for the recognition of LPS by TLR4 but not for that of PGN by TLR2 of mast cells.  相似文献   

4.
Divergent response to LPS and bacteria in CD14-deficient murine macrophages   总被引:10,自引:0,他引:10  
Gram-negative bacteria and the LPS constituent of their outer membranes stimulate the release of inflammatory mediators believed to be responsible for the clinical manifestations of septic shock. The GPI-linked membrane protein, CD14, initiates the signaling cascade responsible for the induction of this inflammatory response by LPS. In this paper, we report the generation and characterization of CD14-null mice in which the entire coding region of CD14 was deleted. As expected, LPS failed to elicit TNF-alpha and IL-6 production in macrophages taken from these animals, and this loss in responsiveness is associated with impaired activation of both the NF-kappaB and the c-Jun N-terminal mitogen-activated protein kinase pathways. The binding and uptake of heat-killed Escherichia coli, measured by FACS analysis, did not differ between CD14-null and wild-type macrophages. However, in contrast to the findings with LPS, whole E. coli stimulated similar levels of TNF-alpha release from CD14-null and wild-type macrophages at a dose of 10 bioparticles per cell. This effect was dose dependent, and at lower bacterial concentrations CD14-deficient macrophages produced significantly less TNF-alpha than wild type. Approximately half of this CD14-independent response appeared to be mediated by CD11b/CD18, as demonstrated by receptor blockade using neutrophil inhibitory factor. An inhibitor of phagocytosis, cytochalasin B, abrogated the induction of TNF-alpha in CD14-deficient macrophages by E. coli. These data indicate that CD14 is essential for macrophage responses to free LPS, whereas other receptors, including CD11b/CD18, can compensate for the loss of CD14 in response to whole bacteria.  相似文献   

5.
The effect of hydrocortisone (HC) on colony-stimulating activity (CSA) production from mouse bone marrow adherent cells, spleen cells and peritoneal macrophages with or without bacterial lipopolysaccharide (LPS) stimulation was studied. CSA in the supernatant from bone marrow adherent cells incubated with HC was found to be five times higher than CSA from cultures without LPS stimulation. In contrast, the CSA production by spleen cells and peritoneal macrophages were significantly suppressed by HC in both LPS-stimulated and non-stimulated cultures. These studies suggest that the effect of HC on CSA production was quite different depending on the target cells.  相似文献   

6.
Male mice (CBA x C57BL6)F1 were used for the experiments throughout this study. The levels of spontaneous and LPS-stimulated cytokines production (IL-1 beta, IL-6 and TNF-alpha) by peritoneal, splenic, and bone marrow macrophages were evaluated by means of enzyme-linked immunosorbent assay at 3, 6, 24, 48 and 72 hours after irradiation alone or combined injury (irradiation + thermal burn). The results suggest that macrophages, harvested from the main mice hematopoietic organs (bone marrow, spleen), did not increase cytokines production within the first three days following the 7 Gy gamma-irradiation or combined injury. Peritoneal macrophages revealed a capacity to enhance IL-6 and IL-1 production versus normal healthy mice. There were no significant differences of cytokine-producing activity if macrophages were harvested from irradiated or combined injured mice.  相似文献   

7.
The human MD-2 molecule is associated with the extracellular domain of human Toll-like receptor 4 (TLR4) and greatly enhances its LPS signaling. The human TLR4-MD-2 complex thus signals the presence of LPS. Little is known, however, about cell surface expression and LPS signaling of the TLR4-MD-2 complex in vivo. We cloned mouse MD-2 molecularly and established a unique mAb MTS510, which reacted selectively with mouse TLR4-MD-2 but not with TLR4 alone in flow cytometry. Mouse MD-2 expression in TLR4-expressing cells enhanced LPS-induced NF-kappaB activation, which was clearly inhibited by MTS510. Thioglycolate-elicited peritoneal macrophages expressed TLR4-MD-2, which was rapidly down-regulated in the presence of LPS. Moreover, LPS-induced TNF-alpha production by peritoneal macrophages was inhibited by MTS510. Collectively, the TLR4-MD-2 complex is expressed on macrophages in vivo and senses and signals the presence of LPS.  相似文献   

8.
In macrophages, two signaling pathways, dependent on MyD88 or TIR domain-containing adaptor-inducing IFN-β (TRIF) signaling, emanate from the LPS receptor TLR4/MD-2. In this study, we show that in murine bone marrow-derived mast cells (BMMCs), only the MyD88-dependent pathway is activated by LPS. The TRIF signaling branch leading both to NF-κB activation and enhanced proinflammatory cytokine production, as well as to IRF3 activation and subsequent IFN-β production, is absent in LPS-stimulated BMMCs. IRF3 activation is also absent in peritoneal mast cells from LPS-injected mice. We observed strongly diminished TRAM expression in BMMCs, but overexpression of TRAM only moderately enhanced IL-6 and did not boost IFN-β responses to LPS in these cells. A combination of very low levels of TRAM and TLR4/MD-2 with the known absence of membrane-bound CD14 are expected to contribute to the defective TRIF signaling in mast cells. We also show that, unlike in macrophages, in BMMCs the TRIF-dependent and -independent IFN-αβ responses to other recognized IFN inducers (dsRNA, adenovirus, and B-DNA) are absent. These results show how the response to the same microbial ligand using the same receptor can be regulated in different cell types of the innate immune system.  相似文献   

9.
Production of tumor necrosis factor (TNF) and interleukin-1 (IL-1) by macrophages of the spleen and peritoneal exudate of mice as well as cytotoxic factors (CFs) by murine splenocytes after in vitro activation was estimated. All the derivatives of muramyldipeptide (MDP) and glucosaminylmuramyldipeptide (GMDP) were able to induce production of TNF and CFs. In the presence of lipopolysaccharide (LPS), the effect was always higher. The response of the spleen macrophages to the effect of the preparations was higher than that of the peritoneal ones and ++non-fractionated splenocytes. GMDP and GMDP4 especially in the presence of LPS had the highest effect on induction of IL-1 by the murine peritoneal macrophages. On the contrary, MDP induced higher IL-1 synthesis by the spleen macrophages. The most active substances with respect to production of TNF, CFs and IL-1, i.e. MDP3 and GMDP4, might be recommended for immunotherapy of syngeneic tumors in animals.  相似文献   

10.
Fulminant meningococcal sepsis (FMS) is considered the prototypical Gram-negative sepsis. Lipopolysaccharide (LPS) is thought to be the main toxic element that induces pro-inflammatory cytokine production after interaction with CD14 and toll-like receptor 4 (TLR4). However, there is increasing evidence that LPS is not the sole toxic element of meningococci. The aim of the present study was to determine the role of CD14 and TLR4 in pro-inflammatory cytokine induction by meningococci. To this end, cytokine induction by isolated meningoccal LPS, wild-type N. meningitidis H44/76 (LPS+-meningococci) matched for concentrations of LPS and LPS-deficient N. meningitidis H44/76lpxA (LPS - -meningococci) was studied in human PBMCs and murine peritoneal macrophages (PMs). Pre-incubation of PBMCs with WT14, a monoclonal antibody against CD14, abolished TNF-alpha and IL-1beta induction by E. coli LPS, while cytokine induction by meningococcal LPS was only partially inhibited. When LPS+- and LPS - -meningococci at higher concentrations were used as stimuli, anti-CD14 had a minimal effect. In C3H/HeJ murine PMs, devoid of a functional TLR4, minimal IL-1alpha, IL-6 and TNF-alpha production was seen after stimulation with 10 ng/mL E. coli or meningococcal LPS. However, at higher concentrations (1000 ng LPS/mL) the production of TNF-alpha, but not IL-1alpha or IL-6, occurred also independently of TLR4. The expression of a functional TLR4 in murine PMs had no effect on the cytokine induction by LPS+- or LPS - -meningococci. It is concluded that pro-inflammatory cytokine induction by N. meningitidis can occur independently of CD14 and TLR4.  相似文献   

11.
The ornithine-containing lipids (OL)-induced cytokine production pattern in macrophage-like J774.1 and RAW 264.7 cells was different from that in the peritoneal macrophages previously reported. OLs, as well as lipopolysaccharide (LPS) of Escherichia coli, strongly induced tumor necrosis factor (TNF) alpha but not interleukin (IL)-1beta in J774.1 cells. In the RAW cells, IL-1beta, TNF-alpha and prostaglandin E(2) were strongly induced by the OLs and LPS. OL- and serine-glycine-containing lipid (SGL)-induced TNF-alpha production in J774.1 and RAW 264.7 cells required serum. However, in CD14-deficient LR-9 cells, TNF-alpha was not induced by the OLs in the presence or absence of serum. OLs and a SGL almost completely inhibited the binding of (125)I-LPS to J774.1 cells. These results suggested that OLs and SGL activate macrophages via the CD14-dependent pathway.  相似文献   

12.
Dysregulated inflammation is a complication of type 2 diabetes (T2D). In this study, we show that augmented LPS-induced TNF-alpha production by resident peritoneal macrophages (PerMphi) in type 2 diabetic (db/db) mice is dependent on elevated glucose and requires p38 MAPK. Intraperitoneal LPS administered to db/db and nondiabetic (db/+) mice induced 3- and 4-fold more TNF-alpha in the peritoneum and serum, respectively, of db/db mice as compared with db/+ mice. Examination of the TLR-4/MD2 complex and CD14 expression showed no difference between db/db and db/+ PerMphi. Ex vivo stimulation of PerMphi with LPS produced a similar 3-fold increase in TNF-alpha production in db/db PerMphi when compared with db/+ PerMphi. PerMphi isolated from db/+ mice incubated in high glucose (4 g/L) medium for 12 h produced nearly 2-fold more TNF-alpha in response to LPS than PerMphi incubated in normal glucose medium (1 g/L). LPS-dependent stimulation of PI3K activity, ERK1/2 activation, and p38 kinase activity was greater in PerMphi from db/db mice as compared with db/+ mice. Only inhibition of p38 kinase blocked LPS-induced TNF-alpha production in PerMphi from db/db mice. Taken together, these data indicate that augmented TNF-alpha production induced by LPS in macrophages during diabetes is due to hyperglycemia and increased LPS-dependent activation of p38 kinase.  相似文献   

13.
Lipoteichoic acid (LTA) derived from Streptococcus pneumoniae, purified employing a chloroform/methanol protocol, and from Staphylococcus aureus, prepared by the recently described butanol extraction procedure, was investigated regarding its interaction with lipopolysaccharide (LPS)-binding protein (LBP), CD14, Toll-like receptors (TLRs)-2 and -4, and MD-2. LTA from both organisms induced cytokine synthesis in human mononuclear phagocytes. Activation was LBP- and CD14-dependent, and formation of complexes of LTA with LBP and soluble CD14 as well as catalytic transfer of LTA to CD14 by LBP was verified by PhastGel(TM) native gel electrophoresis. Human embryonic kidney (HEK) 293/CD14 cells and Chinese hamster ovary (CHO) cells were responsive to LTA only after transfection with TLR-2. Additional transfection with MD-2 did not affect stimulation of these cells by LTA. Our data suggest that innate immune recognition of LTA via LBP, CD14, and TLR-2 represents an important mechanism in the pathogenesis of systemic complications in the course of infectious diseases brought about by the clinically most important Gram-positive pathogens. However, the involvement of TLR-4 and MD-2 in this process was ruled out.  相似文献   

14.
We previously showed that viable Mycobacterium tuberculosis (Mtb) bacilli contain distinct ligands that activate cells via the mammalian Toll-like receptor (TLR) proteins TLR2 and TLR4. We now demonstrate that expression of a dominant negative TLR2 or TLR4 proteins in RAW 264.7 macrophages partially blocked Mtb-induced NF-kappa B activation. Coexpression of both dominant negative proteins blocked virtually all Mtb-induced NF-kappa B activation. The role of the TLR4 coreceptor MD-2 was also examined. Unlike LPS, Mtb-induced macrophage activation was not augmented by overexpression of ectopic MD-2. Moreover, cells expressing an LPS-unresponsive MD-2 mutant responded normally to Mtb. We also observed that the lipid A-like antagonist E5531 specifically inhibited TLR4-dependent Mtb-induced cellular responses. E5531 could substantially block LPS- and Mtb-induced TNF-alpha production in both RAW 264.7 cells and primary human alveolar macrophages (AM phi). E5531 inhibited Mtb-induced AM phi apoptosis in vitro, an effect that was a consequence of the inhibition of TNF-alpha production by E5531. In contrast, E5531 did not inhibit Mtb-induced NO production in RAW 264.7 cells and AM phi. Mtb-stimulated peritoneal macrophages from TLR2- and TLR4-deficient animals produced similar amounts of NO compared with control animals, demonstrating that these TLR proteins are not required for Mtb-induced NO production. Lastly, we demonstrated that a dominant negative MyD88 mutant could block Mtb-induced activation of the TNF-alpha promoter, but not the inducible NO synthase promoter, in murine macrophages. Together, these data suggest that Mtb-induced TNF-alpha production is largely dependent on TLR signaling. In contrast, Mtb-induced NO production may be either TLR independent or mediated by TLR proteins in a MyD88-independent manner.  相似文献   

15.
Lymphopenia was induced in mice by a single injection of cyclophosphamide. IL-7 or a control protein were administered to the mice twice daily and the cellularity and composition of the spleen, lymph node, bone marrow, and thymus were determined at various time points thereafter. In comparison to the control cyclophosphamide-treated mice, animals receiving cyclophosphamide and IL-7 had an accelerated regeneration of splenic and lymph node cellularity. There was no significant difference in the rate of recovery of the bone marrow and thymus of the control and IL-7-treated mice. Assessment of the pre-B cell compartment revealed a dramatic increase in total pre-B cell numbers in the spleen and bone marrow of the IL-7-treated mice as measured by both flow microfluorimetry and a pre-B cell colony-forming assay. This was followed in a few days by a significant increase in surface IgM+B cell numbers to levels above normal values in both the spleen and lymph node. IL-7 administration to cyclophosphamide-treated mice also resulted in an accelerated recovery of peripheral CD4+ and CD8+ cell numbers in the spleen and lymph node. The numbers of CD8+ cells were increased by twofold over normal levels in cyclophosphamide-treated mice receiving IL-7. Myeloid recovery was determined in cyclophosphamide treated mice by assessing the numbers of CFU-granulocyte-macrophage and Mac 1+ cells. There was no significant difference in myeloid recovery between cyclophosphamide-treated mice receiving IL-7 or control protein. These results suggest that administration of IL-7 after chemical-induced lymphopenia may have therapeutic benefits in shortening the period required to achieve normal lymphoid cellularity.  相似文献   

16.
LPS is known to be a potent activator of macrophages and induces the production of TNF-alpha and IL-1. However, the signaling events and regulatory mechanisms required for the activation of macrophages by LPS have not been resolved precisely. We show that LPS modulates its own response in macrophages. Proteose peptone-induced murine peritoneal macrophages (P-PEM) produce significant amount of TNF-alpha and IL-1 after stimulation with LPS. However, preexposure of macrophages to low doses (less than 1 ng/ml) of LPS renders them refractory to stimulation by a second round of LPS, as evaluated by production of TNF-alpha. The loss of sensitivity to a second round of LPS was selective for TNF-alpha production as the LPS-primed macrophages retained the ability to produce IL-1. Northern blot analysis was performed with total RNA obtained from control and LPS- (1 ng/ml) primed P-PEM after 3-h stimulation with a second round of LPS. The expression of TNF-alpha mRNA was inhibited in LPS-primed P-PEM, whereas the expression of IL-1 beta mRNA was the same in control and LPS-primed P-PEM, consistent with the data of biologic activities of these two cytokines. Zymosan-induced TNF-alpha production was the same in control and LPS-primed macrophages, indicating that not all of the pathways required for TNF-alpha production were affected by LPS priming. Monokines such as human (h) rIL-1 alpha, hrTNF-alpha, hrIL-6, and murine rIFN-beta could not substitute for the action of low doses of LPS, and addition of indomethacin could not restore TNF-alpha production. These results suggest that exposure of macrophages to low doses of LPS suppresses the production of TNF-alpha, but not of IL-1, by inhibiting the expression of mRNA through a noncyclooxygenase-dependent mechanism. Thus, LPS-induced production of TNF-alpha and IL-1 in macrophages are differently regulated.  相似文献   

17.
Hereditary properdin deficiency is linked to susceptibility to meningococcal disease (Neisseria meningitidis serotypes Y and W-135) with high mortality. Its relative contribution toward the outcome of nonseptic shock has not been investigated. Using properdin-deficient C57BL/6 mice and their littermates, this study examines their survival of zymosan-induced and LPS-induced shock. Properdin-deficient mice were more resistant to zymosan shock compared with wild-type mice, which showed greater impairment of end-organ function 24 h after zymosan injection, higher TNF-alpha production by alveolar and peritoneal macrophages, higher TNF-alpha, and, inversely, lower IL-10 levels in peritoneal lavage and circulation and higher plasma C5a levels. Properdin-deficient mice showed significantly higher mortality in LPS shock, elevated TNF-alpha, and, inversely, reduced IL-10 production by peritoneal macrophages as well as lower plasma C5a levels compared with wild-type littermates. NO production by peritoneal macrophages and plasma alpha1-antitrypsin levels at 24 h after the injection of LPS or zymosan were decreased in properdin-deficient mice in both models, and fewer histopathologic changes in liver were observed in properdin-deficient animals. This study provides evidence that properdin deficiency attenuates zymosan-induced shock and exacerbates LPS-induced shock.  相似文献   

18.
Hemorrhagic shock results in a severe impairment of the immune response. Immunological alterations after hemorrhagic shock thus appear to be responsible for reduced resistance to infectious agents commonly observed after shock and severe injury. In the present study we examined the TNF-alpha-producing capacity of immune cells derived from different organs after sublethal shock in rats. Hemorrhagic shock was established by pressure controlled bleeding to a mean arterial pressure of 35 mm Hg for 35-40 min and consecutive resuscitation in male Sprague-Dawley rats. Twenty four hours after shock, TNF-a production in response to lipopolysaccharide (LPS, Salmonella friedenau) stimulation was measured in isolated spleen, bone marrow and blood cells. TNF-a production could be induced by stimulation with 1 ng/ml, in blood, spleen and bone marrow cells collected from sham-operated animals. A maximal stimulation was observed in all cell types after stimulation with 10 ng/ml LPS and could not be further increased with LPS doses of 100 ng/ml. Hemorrhagic shock of 35 mm Hg for 35-40 min, with consecutive resuscitation did not result in mortality, in contrast to a 4 hours lasting hemorrhagic shock resulting in 80% mortality. Blood, spleen or bone marrow cells, harvested from animals 24 hours after sublethal hemorrhagic shock, showed a significantly reduced TNF-alpha production in all cell populations after LPS stimulation. Serum collected from animals 2 hours after sublethal hemorrhagic shock contained an activity not present either before or 24 hours after shock, that downregulated LPS-induced TNF-alpha production in rat whole blood cultures and the murine macrophage cell line J774. The inhibitory activity present in serum, 2 hours after shock is not IL-10 since this mediator was not detectable in any serum sample. However, in the serum samples with TNF-alpha-inhibitory activity, elevated levels of PGE2 metabolites were found, which suggests the involvement of prostaglandins in trauma-induced immunosuppression. Altered TNF-a expression might be partially explained by an inhibitory activity in the serum already present 2 hours after shock. Since adequate, but not overwhelming TNF-alpha production is essential for host response, the altered cytokine formation might explain local and systemic susceptibility to infections after hemorrhagic shock.  相似文献   

19.
The cells of immune system such as monocytes and macrophages are in first line defence against dangerous signals. In the present paper the recognition of Dectin 1 receptors and the modulation of Interleukin-10 (IL-10) and Tumor Necrosis Factor-alpha (TNF-alpha) cytokine production by Curdlan and Curdlan derivatives in peripheral blood mononuclear cells (PBMCs) were studied. The effect of Curdlan or Curdlan derivatives on the expression of Dectin 1 receptors in PBMCs was revealed by flow-cytometry and the levels of IL-10 and TNFalpha were measured by ELISA kit in supernatants of PBMCs cultured in presence or absence of Curdlan, Curdlan derivatives and LPS. Our results suggested that Curdlan and Curdlan derivatives were able to increase the expression of Dectin-1 receptors on monocyte cells. The combined treatment of Curdlan/Curdlan derivatives and Pam3Cys produced an increase of CD14+ cells possessing Dectin-1 receptors. We demonstrated that Curdlan (at 20 microg unique dose) up-regulated TNF-alpha production and down-regulated IL-10 production in PBMCs. Conversely, Palm CM/SP-Curdlan (20 microg unique dose) was able to down-regulate TNF-alpha production and to up-regulate IL-10 production in PBMCs. For instance, Palm CM/SP-Curdlan determined a 5 times decrease of TNF-alpha production than Curdlan. Regarding the effect of Palm CM/SP-Curdlan on IL-10 production in PBMCs, we noticed that the level of IL-10 was about 4 times greater than Curdlan activity. We observed that a combined treatment of Curdlan/Curdlan derivatives and LPS induced about 5 times decrease in TNF-alpha production in PBMCs. IL-10 production induced by Palm CM/SP-Curdlan and LPS was about 6 times greater than the combined effect of Curdlan and LPS. The treatment of PBMCs with SP-Curdlan alone affected neither TNF-alpha production nor IL-10 production. Our results are in accordance with other studies demonstrating that Dectin-1 and TLR2/TLR6 signaling combine to enhance the responses triggered by each receptor and the signaling pathway induced by Dectin-1 could mediate the production of pro-inflammatory cytokines.  相似文献   

20.
Besides its role as a barrier against potential pathogens, intestinal flora is presumed to protect the host by priming the immunological defense mechanisms. In this respect, the influence of intestinal flora on macrophage precursors was examined, and its modulating effect was compared on LPS-induced cytokine production by macrophages derived from bone marrow and spleen precursors (BMDM and SDM respectively). The regulation of IL-1, IL-6, TNF-alpha and IL-12 production in macrophages from germ-free and from three groups of flora-associated mice, conventional, conventionalized and E. coli-mono-associated mice, was investigated. The whole flora inhibited IL-1, TNF-alpha and IL-12 secretion by BMDM, whereas it had a stimulatory effect on IL-12 secretion by SDM. Implantation of E. coli alone enhanced cytokine secretion by BMDM but had a more limited effect than whole flora on SDM, enhancing only TNF-alpha and IL-12 secretion. Study of expression of mRNA showed a correlation with protein secretion for IL-6 but not for TNF-alpha and IL-1. IL-12 enhancement in BMDM seemed to be dependent on regulation of p35 mRNA expression while it was correlated to increased p40 mRNA expression in SDM. The results demonstrated that intestinal flora modulated bone marrow and spleen macrophage cytokine production in a differential manner and suggested a role for bacteria other than E. coli among the whole flora. The contrasting effects exerted by the intestinal flora on bone marrow and spleen precursors are an interesting observation in view of the different functions of these organs in immunity. The finding that intestinal flora enhanced IL-12 production in spleen is also potentially important since this cytokine is implicated in the determination of the relative levels of Th1 and Th2 responses and plays a pivotal role in host defense against intracellular microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号