首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  国内免费   5篇
  2022年   6篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently,m RNAs and micro RNAs(mi RNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal mi RNAs, since the mi RNA profiles of exosomes may differ from those of the parent cells. Exosomal mi RNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal mi RNAs, and briefly describe how exosomes and their mi RNAs function in recipient cells.Finally, we will discuss the potential applications of these mi RNA-containing vesicles in clinical settings.  相似文献   
2.
Three cases of avian influenza virus H10N8 were reported in Nanchang, China, as of April 2014. To identify the knowledge, attitudes, and practices (KAP) related to H10N8 among farmers’ market workers, a cross-sectional survey was conducted in 63 farmers’ markets in Nanchang. Using the resulting data, characteristics of poultry and non-poultry workers’ knowledge, attitudes, and practice were described. Results suggest that interventions targeting high-risk workers should be developed and implemented by public health agencies to prevent the spread of H10N8. Additionally policies that encourage farmers’ market workers to receive influenza vaccine should be developed, adopted, and enforced.  相似文献   
3.
急性出血性结膜炎(Acute hemorrhagic conjunctivitis,AHC)是目前人类最常见的眼病之一,柯萨奇病毒A组24型变异株(Coxsackievirus A24 variant,CV-A24v)是近年来报道引起该病的主要病原体。本研究选取10株来自江西省2010年AHC暴发疫情的CV-A24v,采用特异性引物扩增并测定其全基因组序列。对该10条CV-A24v的全基因组序列进行系统发育分析以及重组分析,计算本研究测定的江西10条以及GenBank中所有22条CV-A24v的全基因组序列的氨基酸置换熵值,并预测其正向选择位点。结果表明,在江西10条CV-A24v基因组序列中未检测到重组。基于全基因组序列构建的最大似然树表明江西10株CV-A24v属于GIV基因型,且分处于两条传播链。对上述32条CV-A24v序列的氨基酸置换熵值计算,共得到25个易突变位点(熵值>0.6),易突变概率最高的区段为2A区。基于Datamonkey中FUBAR和FEL模型分析,发现位于结构蛋白VP2区的234位氨基酸为两种模型共同获得的CV-A24v的正向选择位点。本研究分析了江西10株CV-A24v的全基因组序列特征,为CV-A24v引起的AHC防控工作提供了基础资料。  相似文献   
4.
血清型别鉴定及基因分型分析是开展肠道病毒(Enterovirus,EV)分子进化特征研究的重要内容。目前为止,国内外对柯萨奇病毒A组9型(Coxsackievirus A9,CVA9)的研究主要集中在衣壳蛋白区的细胞受体结合位点及其基因特性分析,而基于全长VP1序列的基因型划分结果尚未明确。本研究依托国家手足口病监测网络,对2010-2019年全国31个省级行政区(省、自治区、直辖市)上送的18 238份手足口病样本中分离出的24株CVA9进行全长VP1区序列测定,并与GenBank中所有全长VP1区序列一起进行基因型划分研究。测序结果显示24株CVA9分离株VP1全长为906bp,编码302个氨基酸,与CVA9原型株(Griggs)核苷酸和氨基酸相似性分别为80.5%~97.6%和92.3%~99.6%。结合系统进化树和同一血清型内不同基因型的核苷酸差异界值为15%~25%,将全球CVA9划分为A-H八个基因型。进化树显示B、C和D基因型在病毒进化过程中已消失,而E、F和G基因型呈现共循环的趋势,其中G基因型包含了亚洲、北美洲、大洋洲和欧洲等9个国家的毒株,是CVA9的优势基因型。大...  相似文献   
5.
Hand, foot, and mouth disease (HFMD) has been one of the most common infectious diseases in Shijiazhuang City, as is the situation in China overall. In the National HFMD surveillance system, the pathogen detection was focused on EV-A71 and CVA16, and therefore, information on the other EVs is very limited. In order to identify the circulating EV serotypes in the HFMD outbreaks in Shijiazhuang City during 2010–2012, 4045 patients presented with HFMD were recruited in the study, and clinical samples were investigated. Typing of EV serotypes was performed using the molecular typing methods, and phylogenetic analyses based on entire VP1 sequences of human enterovirus 71 (EV-A71), coxsackievirus A16 (CVA16), CVA10 and CVB3 was performed. The results revealed that EV-A71 and CVA16 were the 2 most important pathogens but the circulating trends of the 2 viruses showed a shift, the spread of EV-A71 became increasingly weak, whereas the spread of CVA16 became increasingly stronger. CVA10 and CVB3 were the third and fourth most prevalent pathogens, respectively. Co-infection of two viruses at the same time was not found in these samples. Based on entire VP1 region sequences, the phylogenetic analysis revealed that C4a subgenotype EV-A71, B1a and B1b subgenotype CVA16 continued to evolve. The CVA10 strains were assigned to 4 genotypes (A–D), whereas the CVB3 strains were assigned to 5 genotypes (A–E), with clear geographical and temporal-specific distributions. The Shijiazhuang CVA10 sequences belonged to 4 epidemic lineages within genotype C, whereas the Shijiazhuang CVB3 sequences belonged to 2 epidemic lineages within genotype E, which may have the same origins as the strains reported in other part of China. CVA10 and CVB3, 2 pathogens that were previously infrequently detected, were identified as pathogens causing the HFMD outbreaks. This study underscores the need for detailed laboratory-based surveillances of HFMD in mainland China.  相似文献   
6.
The nuclear transport factor 2 (NTF2) like superfamily includes members of the NTF2 family, delta-5-3-ketosteroid isomerases, and the beta subunit of ring hydroxygenases. This family plays important roles in both eukaryotic and prokaryotic cells, and is taken as a classic example of divergent evolution because proteins in this family exhibit diverse biological functions, although share common structural features. We cloned the gene RHE_RS02845 encoding a predicted NTF2-like domain-containing protein in Rhizobium etli, and prepared U-13C/15N-labeled protein samples for its three-dimensional NMR structural determination. Here, chemical shift assignments for both backbone and side-chain atoms are reported, which is prerequisite for further structural calculation and functional research using NMR spectroscopy.  相似文献   
7.
Tan X  Huang X  Zhu S  Chen H  Yu Q  Wang H  Huo X  Zhou J  Wu Y  Yan D  Zhang Y  Wang D  Cui A  An H  Xu W 《PloS one》2011,6(9):e25662
Emerging epidemics of hand-foot-and-mouth disease (HFMD) associated with enterovirus 71 (EV71) has become a serious concern in mainland China. It caused 126 and 353 fatalities in 2008 and 2009, respectively. The epidemiologic and pathogenic data of the outbreak collected from national laboratory network and notifiable disease surveillance system. To understand the virological evolution of this emerging outbreak, 326 VP1 gene sequences of EV71 detected in China from 1987 to 2009 were collected for genetic analyses. Evidence from both traditional and molecular epidemiology confirmed that the recent HFMD outbreak was an emerging one caused by EV71 of subgenotype C4. This emerging HFMD outbreak is associated with EV71 of subgenotype C4, circulating persistently in mainland China since 1998, but not attributed to the importation of new genotype. Originating from 1992, subgenotype C4 has been the predominant genotype since 1998 in mainland China, with an evolutionary rate of 4.6∼4.8×10−3 nucleotide substitutions/site/year. The phylogenetic analysis revealed that the majority of the virus during this epidemic was the most recent descendant of subgenotype C4 (clade C4a). It suggests that the evolution might be one of the potential reasons for this native virus to cause the emerging outbreak in China. However, strong negative selective pressure on VP1 protein of EV71 suggested that immune escape might not be the evolving strategy of EV71, predicting a light future for vaccine development. Nonetheless, long-term antigenic and genetic surveillance is still necessary for further understanding.  相似文献   
8.
Zhang Y  Wang J  Guo W  Wang H  Zhu S  Wang D  Bai R  Li X  Yan D  Wang H  Zhang Y  Zhu Z  Tan X  An H  Xu A  Xu W 《PloS one》2011,6(11):e27895

Background

Large-scale outbreaks of hand, foot, and mouth disease (HFMD) occurred repeatedly in the Central Plain of China (Shandong, Anhui, and Henan provinces) from 2007 until now. These epidemics have increased in size and severity each year and are a major public health concern in mainland China.

Principal Findings

Phylogenetic analysis was performed and a Bayesian Markov chain Monte Carlo tree was constructed based on the complete VP1 sequences of HEV71 isolates. These analyses showed that the HFMD epidemic in the Central Plain of China was caused by at least 5 chains of HEV71 transmission and that the virus continued to circulate and evolve over the winter seasons between outbreaks. Between 1998 and 2010, there were 2 stages of HEV71 circulation in mainland China, with a shift from evolutionary branch C4b to C4a in 2003–2004. The evolution rate of C4a HEV71 was 4.99×10-3 substitutions per site per year, faster than the mean of all HEV71 genotypes. The most recent common ancestor estimates for the Chinese clusters dated to October 1994 and November 1993 for the C4a and C4b evolutionary branches, respectively. Compared with all C4a HEV71 strains, a nucleotide substitution in all C4b HEV71 genome (A to C reversion at nt2503 in the VP1 coding region, which caused amino acid substitution of VP1–10: Gln to His) had reverted.

Conclusions

The data suggest that C4a HEV71 strains introduced into the Central Plain of China are responsible for the recent outbreaks. The relationships among HEV71 isolates determined from the combined sequence and epidemiological data reveal the underlying seasonal dynamics of HEV71 circulation. At least 5 HEV71 lineages circulated in the Central Plain of China from 2007 to 2009, and the Shandong and Anhui lineages were found to have passed through a genetic bottleneck during the low-transmission winter season.  相似文献   
9.
Articular cartilage damage can lead to joint deformity, pain, and severe dysfunction. However, due to the lack of blood vessels and nerves in articular cartilage, the self‐healing capacity of damaged cartilage is limited. In this study, we overexpressed small ubiquitin‐like modifier (SUMO)1, SUMO2/3, and SUMO1/2/3 in bone marrow mesenchymal stem cells (BMSCs). Then, these cells were inoculated on surfaces of different hardness, and their differentiation into chondrocytes, hypoxic tolerance ability, and inflammatory response was detected. Finally, BMSCs were transplanted into the injured knee joint cavity of the rats, and the repair was evaluated. We found that BMSCs overexpressing SUMO1 were more likely to differentiate into articular cartilage along with the hardness of the surface, while BMSCs overexpressing SUMO2/3 could reduce inflammation response and improve the damaged cartilage microenvironment. In the rat model, BMSCs overexpressing SUMO1/2/3 transplanted on injured articular cartilage surface showed better survival, less inflammatory response, and improved tissue repair capability. In conclusion, BMSCs overexpressing SUMO are more tolerant to hypoxia conditions, and have stronger repair ability for damaged chondrocytes in vitro and for articular cartilage injury model in rats, and are excellent seed cells for repairing articular cartilage.  相似文献   
10.
Coxsackievirus A16 (CVA16) is responsible for nearly 50% of all the confirmed hand, foot, and mouth disease (HFMD) cases in mainland China, sometimes it could also cause severe complications, and even death. To clarify the genetic characteristics and the epidemic patterns of CVA16 in mainland China, comprehensive bioinfomatics analyses were performed by using 35 CVA16 whole genome sequences from 1998 to 2011, 593 complete CVA16 VP1 sequences from 1981 to 2011, and prototype strains of human enterovirus species A (EV-A). Analysis on complete VP1 sequences revealed that subgenotypes B1a and B1b were prevalent strains and have been co-circulating in many Asian countries since 2000, especially in mainland China for at least 13 years. While the prevalence of subgenotype B1c (totally 20 strains) was much limited, only found in Malaysia from 2005 to 2007 and in France in 2010. Genotype B2 only caused epidemic in Japan and Malaysia from 1981 to 2000. Both subgenotypes B1a and B1b were potential recombinant viruses containing sequences from other EV-A donors in the 5’-untranslated region and P2, P3 non-structural protein encoding regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号