首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
从分子水平探索旋转恒定磁场对机体作用之机理   总被引:20,自引:0,他引:20  
用RCMF旋磁治疗装置研究磁场对信息物质的影响,放射免疫测定发现磁场促使血浆内啡肽显著升高;荧光分光光度法和ELISA法测定发现磁场可以显著抑制5-HT及顺铂等中枢性致呕药物引起的呕吐反应,并同步伴有脑组织、小肠组织5-HT水平的可逆性下降.磁场处理对小鼠5-HT水平的影响表现出明显的窗口效应和滞后效应,磁场对药物致呕的抑制效应与其对5-HT的下调水平有平行相关关系.提示磁场对体内5-HT水平的降低,可能是其抑制细胞毒性化疗药物致呕的内在基础.应用硝酸还原酶反应-分光光度法和NADPH-d组织化学技术,发现磁场可促使丘脑下部一氧化氮(NO)含量显著升高,并具有显著滞后效应. NADPH-d阳性神经细胞及NADPH-d和血管加压素(AVP)双染阳性神经细胞集中分布在丘脑下部室旁核、室周核和视上核,但不存在于视交叉上核,提示室旁核、室周核和视上核一氧化氮肽能神经细胞是丘脑下部的一氧化氮的主要来源.磁场处理后大鼠丘脑下部一氧化氮含量较正常对照组显著升高应归因于这些神经细胞受磁场作用表达增强.一氧化氮和血管加压素的共存可能对磁场调节内分泌具有一定意义.发现磁场可促使肾上腺一氧化氮量显著升高,并维持一定时间,神经肽Y免疫细胞化学染色强度增强,进而对其相关机制和意义进行了讨论.  相似文献   

2.
为研究加压素与应激的关系,我们曾应用免疫细胞化学(PAP)方法结合图像分析技术观察到烫伤应激后2小时视上核、室旁核加压素神经元免疫反应阳性物质的总体积减小最明显。本文采用免疫电镜技术,进一步观察了烫伤后2小时视上核、室旁核加压素神经元超微结构的变化,并运用体视学方法定量分析了对照组及烫伤后2小时组视上核、室分校加压素神经元各240张照片的粗面内质网、高尔基复合体及线粒体的体积密度(Vv)、面积密度(Sv)、面数密度(Na)等。结果显示:烫伤后2小时组视上核、室旁核加压素神经元的粗面内质网的Vv.Sv显著增大,说明合成功能已开始增强,但是,高尔基复合体的Vv、Sv及阳性分泌颗粒却显著减少,因而引起总体积的缩小。从超微结构水平进一步证实加压素参与应激过程。  相似文献   

3.
Ji YP  Mei J 《生理学报》2000,52(1):29-33
在乌拉坦麻醉的成年SD大鼠上,用玻璃微电极细胞外记录的方法,观察了脑室内注射一氧化氮供体及一氧化氮合酶抑制剂对室旁核大细胞自发电活动的作用。结果发现:脑室内注射一氧化氮供体硝普钠对下丘脑室旁核中的加压素神经元产生剂量依赖性抑制作用;脑室内注射一氧化氮合酶抑制剂对加压素神经元也产生抑制作用。上述两种药物对催产素神经元均无作用。这些结果提示:一氧化氮可能在调节加压素和催产素神经元活动中起着不同的作用。  相似文献   

4.
用免疫组化 PAP 技术,对树鼩(Tupaia Belangeri)室旁核血管加压素(VP)免疫阳性神经元进行电镜观察。发现室旁核 VP 阳性神经元核固体内的 VP 阳性反应物主要与高尔基复合体、神经分泌颗粒有关。但在粗面内质网未见 VP 阳性反应物,这与前人对大鼠的研究报告不同。  相似文献   

5.
孤束核参与刺激下丘脑室旁核的镇痛作用   总被引:1,自引:0,他引:1  
本实验用电刺激鼠尾-嘶叫法测痛,观察电刺激下丘脑室旁核的镇痛效应,并采用核团损毁和核团内微量注射药物等方法分析其镇痛通路。实验结果如下:(1)电刺激下丘脑室旁核能产生明显的镇痛效应。同时,放射免疫测定发现脑干加压素含量升高。(2)损毁孤束核能取消刺激下丘脑室旁核的镇痛效应,但对基础痛阈无影响。(3)孤束核内微量注射加压素拮抗剂[d(CH_2)_5 TYr(Me)-AVP]60ng/0.6μl 和加压素抗血清0.6μl 都可明显对抗刺激下丘脑室旁核的镇痛效应。(4)直接在孤束核内微量注射加压素60ng/0.6μl,能模拟刺激下丘脑室旁核的镇痛效应。实验结果表明:电刺激下丘脑室旁核能产生镇痛效应,其机理之一可能是兴奋了下丘脑室旁核中加压素能神经元胞体,后者通过下行投射纤维在孤束核中释放加压素,影响孤束核神经元的活动,从而产生镇痛。  相似文献   

6.
目的 为揭示脑内参与神经免疫调节过程的部位和核团。方法 大鼠腹腔内给予细菌内毒素脂多糖 (LPS)或葡萄球菌肠毒素B (SEB) ,用免疫组织化学方法观察了Ⅰ型IL 1受体在脑内表达的变化。结果 Ⅰ型IL 1受体在正常成年大鼠脑内有广泛的表达 ,隔区、视前内侧区、新皮质、海马、下丘脑室旁核、视上核、下丘脑腹内侧核、弓状核和正中隆起等部位有较多Ⅰ型IL 1受体阳性细胞。与生理盐水对照组和非免疫应激对照组 (强迫游泳 )比较 ,LPS或SEB腹腔注射后大鼠下丘脑室旁核和视上核中表达Ⅰ型IL 1受体的细胞数量显著增加 ,染色加深 (P <0 0 5 )。阳性细胞的胞浆染色面积增大 ,突起染色的长度延长。结论 下丘脑室旁核和视上核在神经免疫调节过程中可能具有重要的作用。  相似文献   

7.
血管加压素(arginine vasopressin,AVP)是下丘脑视上核和室旁核神经元分泌的九肽激素。关于长爪沙鼠不同月龄加压素的分泌状况少见报道。作者采用光镜和电镜、免疫细胞化学和图像分析技术,对不同月龄长爪沙鼠视上核(SON)加压素能神经元加压素的分泌进行了比较研究。结果表明:在H.E染色切片中,各组均可见视上核团呈三角形。免疫细胞化学标记的各组长爪沙鼠中均可见AVP阳性细胞。图像分析数据经统计学处理表明:成龄长爪沙鼠血管加压素的分泌能力较强,幼龄及老龄组分泌能力减弱。  相似文献   

8.
血管加压素样细胞在腺垂体内的存在刘能保张敏海刘少纯李红莲周顺长(同济医科大学基础医学院组织胚胎学教研室,武汉430030)至今的研究证明,合成和释放血管加压素(Vasopressin,VP)的细胞存在于下丘脑视上核、室旁核、室周区、视交叉上核和某些副...  相似文献   

9.
大鼠下丘脑内一氧化氮合酶阳性神经元的分布   总被引:5,自引:1,他引:4  
用NADPH-d组织化学方法观察了大白鼠下丘脑内一氧化氮合酶(NDS)阳性神经元的分布及形态特征。结果显示:在视上核、室旁核的大细胞部、环状核、穹窿周核、下丘脑外侧区、下丘脑腹内侧核、下丘脑背内侧核、乳头体区大部分核团均可见一氧化氮合酶阳性神经元聚集成团。在视前内侧区、视前外侧区、下丘脑前区、下丘脑背侧区、下丘脑后区、室周核、室旁核小细胞部及穹窿内可见散在的一氧化氮合酶阳性神经元。室周核内可见呈阳性反应的接触脑脊液神经元的胞体及突起。一氧化氮合酶阳性神经元大多可见突起,有的突起上可见1~2级分支,并可见膨体。下丘脑大部分区域内可见阳性神经纤维。弓状核内可见许多弧形纤维连于第三脑室室管膜和正中隆起。  相似文献   

10.
实验性高血压大鼠室旁核加压素分泌的免疫细胞化学研究   总被引:2,自引:0,他引:2  
精氨酸加压素(AVP)主要是由下丘脑室旁核(PVN)和视上核(SON)的加压素能神经元合成分泌。近年来的研究表明,AVP作为一种血管活性肽与高血压的发病有关。本文采用二肾一夹法制成高血压模型。应用光、电镜技术、免疫细胞化不技术和图象分析技术对实验性高血压大鼠PVN加压素神经元进行了研究,并与SON加压素神经元及正常大鼠进行比较,研究结果表明,实验性高血压大鼠PVN和SON内AVP阳性细胞中分泌颗粒密集呈棕黄色,正常大鼠组染色浅谈。图象分析检测两组PVN和SON中AVP阳性细胞平均灰度值,所得数据分别经统计学处理,实验组和正常组AVP神经元在PVN有显著性差异。在SON也有显著性差异。但在实验组内的PVN和SON之间无显著性差异,正常大鼠组PVN和SON之间亦无显著性差异。结果表明, 高血压大鼠在血压升高时,PVN和SON内加压素神经元的分泌增强。  相似文献   

11.
By employing nitric acid reductase-spectrophotometry and NADPH-diaphorase/AVP cytochemistry technique, the effects of magnetic field on NO in hypothalamus and relations to Paraventricular Nucleus (PVN), Periventricular Nucleus (PEN), Supraoptic Nucleus (SON) and Suprachiasmatic Nucleus (SCN) were investigated. It was found that the NADPH-d positive neurons and some NADPH-d/AVP dually stained neurons existed in PVN, PEN, SON, but not in SCN, and the magnetic field induced NO (OD) increase there and the high NO (OD) level lasted for 3 hours. The results suggested that NO (OD) increase after the treatment of magnetic field in hypothalamus may result from strong expression of NOergic neurons in the PVN, PEN and SON. The coexistance of NO and AVP may play important role in the regulation of endocrine and neuroendocrine by the magnetic field.  相似文献   

12.
The effect of RCMF-magnetic therapy apparatus on signal substances was studied. The radioimmunoassay (RIA) suggested that the magnetic field increased β-endorphin markedly in plasma. ELISA indicated that the magnetic field inhibited vomiting reaction induced by chemotherapy drug, with reversible decrease of serotonin (5-HT) level in brains, small intestine tissue and serum. Furthermore, the bioeffect of magnetic fields on 5-HT level presented a typical window effect and post-effect, and the inhibitory effect of magnetic field on the emesis was parallel to the decrease level of 5-HT. This result implied that the decrease of 5-HT might be the basis of rotating constant magnetic field (RCMF) inhibiting drug-induced emesis. The nitric acid reductase-spectrophotometry and nicotinamide adenine dinucleotide-diaphorase/arginine-vasopressin (AVP) cytochemistry technique showed that the magnetic field induced nitric oxide (NO) increase in hypothalamus and the high NO(A) level lasted for 3 hours. The results suggested that NO(A) increases after the treatment of the magnetic field in hypothalamus, which may result from strong expression of NO-ergic neuron in paraventricular hypothalamic nucleus (PVN), periventricular hypothalamic nucleus (PEN) and supraoptic nucleus (SON). The coexistence of NO and AVP may play an important role in the regulation of endocrine and neuroendocrine by the magnetic field. And our data also confirmed that the magnetic field increased the content of NO so strongly that high NO level lasted for 3 hours, also made neuropeptide Y (NPY) cell in medulla stained heavily.  相似文献   

13.
The effect of RCMF-magnetic therapy apparatus on signal substances was studied. The radioimmunoassay (RIA) suggested that the magnetic field increased p-endorphin markedly in plasma. ELISA indicated that the magnetic field inhibited vomiting reaction induced by chemotherapy drug, with reversible decrease of serotonin (5-HT) level in brains, small intestine tissue and serum. Furthermore, the bioeffect of magnetic fields on 5-HT level presented a typical window effect and post-effect, and the inhibitory effect of magnetic field on the emesis was parallel to the decrease level of 5-HT. This result implied that the decrease of 5-HT might be the basis of rotating constant magnetic field (RCMF) inhibiting drug-induced emesis. The nitric acid reductase-spec-trophotometry and nicotinamide adenine dinucleotide-diaphorase/arginine-vasopressin (AVP) cytochemistry technique showed that the magnetic field induced nitric oxide (NO) increase in hypo-thalamus and the high NO(A) level lasted for 3 hours. The results sugg  相似文献   

14.
The immunoglobulin heavy chain binding protein (BiP) is an endoplasmic reticulum (ER) chaperone that facilitates the proper folding of newly synthesized secretory and transmembrane proteins. Here we report that BiP mRNA was expressed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in wild-type mice under basal conditions. Dual in situ hybridization in the SON and PVN demonstrated that BiP mRNA was expressed in almost all the neurons of arginine vasopressin (AVP), an antidiuretic hormone. BiP mRNA expression levels were increased in proportion to AVP mRNA expression in the SON and PVN under dehydration. These data suggest that BiP is involved in the homeostasis of ER function in the AVP neurons in the SON and PVN.  相似文献   

15.
Yu KL  Tamada Y  Suwa F  Fang YR  Tang CS 《Life sciences》2006,78(10):1143-1148
Many histochemical investigations indicated that the oxytocin (OXY), the arginine vasopressin (AVP) and the nitric oxide synthase (NOS) have been synthesized in the supraoptic nucleus (SON) neurons. The objective of this study was to examine the age-related expression of the OXY, the AVP and the NOS in the SON of the young adult (2-month-old) and the aged (24-month-old) rats. The histochemistry for reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d; marker for the NOS) and the double labeling histochemistry for the OXY/NADPH-d or the AVP/NADPH-d were employed, and the quantitative analysis was performed with a computer-assisted image processing system. In comparison of the young adult and the aged group, the cell number, the cell size and the reactive density of the NOS-expressing neurons showed a significant increase along with age, and these evidences suggested the age-related increase of the nitric oxide (NO) production. The age-related significant increase was not detected in the number of the OXY/NOS-expressing neurons in the dorsal part, but was detected in the number of the AVP/NOS-expressing neurons in the ventral part. Based on our histochemical findings and reports demonstrated by other authors, we attempted to discuss the physiological role of NOS for the secretion of posterior pituitary hormones along with age.  相似文献   

16.
We assessed the effects of cold and isolation stress on arginine vasopressin (AVP) mRNA in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Vasopressin mRNA levels were determined by in situ hybridization histochemistry at the cellular level. In posterior magnocellular neurons of the PVN isolation stress for 7 or 14 days increased vasopressin mRNA levels 28 and 29%, respectively, compared to group-housed controls. No significant alterations in vasopressin gene expression were observed in the SON after 7 or 14 days of isolation stress. Scattered magnocellular AVP mRNA-expressing cells of the medial parvocellular PVN showed increases of 19 and 34% after 7 and 14 days of isolation, respectively. We also studied the effect of cold or combined cold and isolation stress on vasopressin gene expression in the PVN and SON. Cold stress for 3 h daily for 4 consecutive days increased AVP mRNA levels in the posterior magnocellular PVN by 15%. Cold-isolated animals showed an increase of 21%. No significant effect on AVP mRNA levels in the SON was observed. In contrast to the posterior magnocellular PVN, cold or cold-isolation stress increased AVP mRNA in magnocellular neurons of the medial parvocellular region of the PVN by 25 and 43%, respectively, relative to control rats. These results suggest that psychological and metabolic stress may be added to the list of stressors that activate the hypothalamo-neurohypophysial system.  相似文献   

17.
The quantity and topography of activated vasopressin (AVP), oxytocin (OXY), and tyrosine hydroxylase (TH) neurons were studied immunohistochemically in the anterior, middle, and posterior portions of the PVN and SON in mice 60 min after a single injection of hypertonic saline (HS, 400 microl 1.5M, i.p.). Fos-neuropeptide double-stainings revealed: (1) Fos expression in each portion of the PVN and SON; (2) maximal number of Fos-AVP (79 cells) and Fos-OXY (50 cells) double-labelings in the middle portion of the PVN; (3) low number of Fos-TH perikarya in the PVN and their lack in the SON; (4) similar incidence (around 50%) of Fos-AVP and Fos-OXY perikarya in the SON; and (5) presence of activated AVP, OXY, and TH neurons in the periventricular, subependymal, and sub-PVN zones of the PVN. Topographic analysis revealed that the majority of AVP neurons expressing Fos occupied the dorsolateral and central part of the middle portion of the PVN. In the same PVN portion, Fos-OXY neurons occurred in similar frequency, however, they were primarily distributed along the lateral and medial margins of the PVN. In the SON, Fos-OXY cells occupied mainly its dorsal, while Fos-AVP cells predominated in its ventral part. The data clearly indicate that HS is not a selective stimulus neither for PVN nor SON itself and provide evidence that both PVN and SON AVP and OXY cells play important role in the mediation of signals induced by HS. In addition, the limited number of AVP, OXY, and TH neurons activated by HS may account for their differential functional specializations selective for stress/osmotic circuits activated by HS.  相似文献   

18.
Effects of noradrenaline (NA) and dopamine (DA) on apoptosis of nonapeptidergic neurons of supraoptic (SON) and paraventricular (PVN) nuclei of hypothalamus of male Wistar rats was studied in experiments in vitro. Incubation of hypothalamic sections in the medium with added NA was shown to induce an increase of the amount of pro-apoptotic protein caspase-9 in the nonapeptidergic neurons of the SON and PVN. A comparison of the level of neuronal NO-synthase with the level of caspase-9 expression in these neurons allows concluding that NA leads to initiation of apoptosis in neurons of the SON with mediation by nitric oxide (NO). In the PVN, the NA-induced initiation of apoptosis does not depend on the NO level. Addition of DA to the incubation medium results in an increase of the caspase-9 amount only in PVN neurons regardless of the NO content. The absence of neuronal death after the NA-induced increase of the caspase-9 level in the cells of SON and PVN seems to be due to increased expression of the anti-apoptotic protein bcl-2. Protection of the PVN neurons from death after addition of DA to the incubation medium is probably independent of the expression level of bcl-2. Thus, in the nonapeptidergic neurons of the SON and PVN, which are related by origin and by performed functions, modulation of the process of apoptosis by elevated concentrations of NA and DA is realized by different mechanisms.  相似文献   

19.
We recently identified neuromedin S (NMS) as an endogenous ligand for the FM-4/TGR-1 receptor. Here, we examined the possible involvement of central NMS in regulation of urinary output and vasopressin (AVP) release in rats. Intracerebroventricular (icv) injection of NMS induced a dose-dependent increase in the plasma level of AVP, followed by a decrease of nocturnal urinary output. Expression of cFos after icv injection of NMS was observed in the supachiasmatic nucleus (SCN), arcuate nucleus, paraventricular nucleus (PVN), and supraoptic nucleus (SON). The cFos expressing cells in PVN and SON, but not SCN, were then double-stained using antibodies against the vasopressin. On the other hand, icv injection of neuromedin U, which also binds to the FM-4/TGR-1 receptor, required a concentration ten times higher than that of NMS in order to exert the same antidiuretic potency. These results suggest that central NMS may exert a physiological antidiuretic action via vasopressin release.  相似文献   

20.
Proper development of the hypothalamic-pituitary axis requires precise neuronal signaling to establish a network that regulates homeostasis. The developing hypothalamus and pituitary utilize similar signaling pathways for differentiation in embryonic development. The Notch signaling effector gene Hes1 is present in the developing hypothalamus and pituitary and is required for proper formation of the pituitary, which contains axons of arginine vasopressin (AVP) neurons from the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). We hypothesized that Hes1 is necessary for the generation, placement and projection of AVP neurons. We found that Hes1 null mice show no significant difference in cell proliferation or death in the developing diencephalon at embryonic day 10.5 (e10.5) or e11.5. By e16.5, AVP cell bodies are formed in the SON and PVN, but are abnormally placed, suggesting that Hes1 may be necessary for the migration of AVP neurons. GAD67 immunoreactivity is ectopically expressed in Hes1 null mice, which may contribute to cell body misplacement. Additionally, at e18.5 Hes1 null mice show continued misplacement of AVP cell bodies in the PVN and SON and additionally exhibit abnormal axonal projection. Using mass spectrometry to characterize peptide content, we found that Hes1 null pituitaries have aberrant somatostatin (SS) peptide, which correlates with abnormal SS cells in the pituitary and misplaced SS axon tracts at e18.5. Our results indicate that Notch signaling facilitates the migration and guidance of hypothalamic neurons, as well as neuropeptide content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号