首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
菌蜕系统作为一种新型疫苗体系,是通过对噬菌体PhiX174裂解基因E的精确表达调控建立的.细菌菌蜕兼顾了组合抗原免疫原性、佐剂效应、靶向性载体等作用,特别适合于黏膜免疫及口服免疫;由于缺乏内含物而更加安全;生产过程简单,适宜大规模生产.这些特性决定了细菌菌蜕是一种具有良好应用前景的候选疫苗及递送系统.近年来随着水产养殖业的发展,鱼类细菌性疾病大规模爆发并造成严重损失.鉴于化学药物和常规疫苗的种种缺陷,新型渔用疫苗的研究日渐受到人们重视.在阐述细菌菌蜕系统形成和调控机制的基础上,着重介绍菌蜕疫苗在几种鱼类细菌性病害防治中的研究进展,并对菌蜕系统作为新型渔用疫苗体系的可行性和优越性进行讨论,对其应用前景进行展望.相信随着研究的深入,渔用菌蜕疫苗将在水产养殖病害防治中发挥着越来越重要的作用.  相似文献   

2.
探讨和分析了重组大肠杆菌菌蜕递送系统能否进一步提高幽门螺杆菌核酸疫苗的免疫应答水平.首先构建了展示尿素酶B表位的重组大肠杆菌菌蜕,然后以此菌蜕包裹幽门螺杆菌核酸疫苗pcDNAKAT,经DNA凝胶电泳、荧光显微镜观察和FACS分析,表明该质粒DNA可以非特异地结合到大肠杆菌菌蜕内膜上.该核酸疫苗经重组菌蜕包裹后免疫小鼠,其血清抗过氧化氢酶抗体效价由单独免疫时的1∶(307±39)提高到1∶(520±54),二者差异极显著(P=0.005 8),结果表明利用菌蜕递送系统能较好地提高核酸疫苗的免疫应答水平.  相似文献   

3.
免疫应答水平低下是制约DNA疫苗发展的一个障碍。细菌菌影(bacterialghost,BG)是利用φX174噬菌体的裂解蛋白将革兰氏阴性细菌裂解后形成的空腔,它保留了细菌结构的完整性,具有免疫佐剂的特性,可以作为递送载体,靶向性的将DNA疫苗导入到抗原递呈细胞,从而提高DNA疫苗的免疫应答水平,此外,装载核酸疫苗的细菌菌影可以通过多种方式进行免疫,例如,肌肉注射、皮下注射、口服、黏膜免疫等,更是从根本上提高了DNA疫苗的免疫水平,因此可以说BG是一个极具潜力的核酸疫苗递送载体。现就BG的特性及其在DNA疫苗递送载体中应用的最新进展做一综述。  相似文献   

4.
细菌菌影疫苗(Vaccine of bacterial ghost)作为一种新型疫苗,既可诱导机体产生细胞免疫,又能诱导机体产生体液免疫和黏膜免疫。近年来,利用细菌菌影递送载体的特性,构建重组多价疫苗、DNA疫苗及药物递送的应用越来越受到人们的重视。  相似文献   

5.
菌蜕(Bacterial ghosts)是一种只含有细菌内、外膜结构的细菌空壳,可作为新型疫苗和传递载体。本研究通过3种方式制备禽致病性大肠杆菌(Avian pathogenicity Escherichia coli,APEC)分离株DE17的菌蜕,评价不同的菌蜕制备方法。结果表明,利用噬菌体Phi X174的裂解基因E构建的溶菌质粒pBV220-E制备DE17菌蜕,对DE17菌株裂解率可达99.9%,扫描电镜观测结果表明,在DE17两端或中部形成可见的跨膜孔道,呈现典型的菌蜕结构。利用合成的细胞穿透肽MAP(KLALKLALKALKAALKLA)作用于DE17制备菌蜕,结果表明,10μmol/L的MAP可实现对OD_(600)=0.1的DE17完全灭活,扫描电镜虽未看到明显的跨膜孔道,但细菌的膜结构呈现沟壑状,而构建的可表达MAP的溶菌质粒pBV220-MAP并不能实现对DE17的裂解作用。本研究通过比较分析不同APEC菌蜕的制备方式,为进一步研究菌蜕疫苗和提高菌蜕疫苗的生物安全性提供参考。  相似文献   

6.
嗜水气单胞菌菌蜕的制备及其对银鲫的口服免疫   总被引:1,自引:0,他引:1  
菌蜕系统是一个自身具有佐剂性质的新型疫苗体系,不含细胞质内容物但具有细菌的完整表面抗原结构,可诱导机体的体液、细胞免疫应答及增强黏膜免疫反应.本研究通过将带有裂解基因E的质粒pElysis转化至嗜水气单胞菌J-1株中,对Ah J-1(pElysis)进行温度诱导,温度从28℃升至42℃,每隔15min检测菌液的OD600值,测定其溶菌动力学,并做无菌检验,用扫描电镜观察裂解后的细菌形态,研究其作为口服疫苗对银鲫的效果.结果显示,通过温度诱导,嗜水气单胞菌J-1(pElysis)OD值在诱导30min后开始持续下降,75min时开始趋于平稳,到120min溶菌效率达99.99%,诱导16h后进行无菌检验,证实其无活菌.扫描电镜观察绝大部分菌体经诱导后形成菌蜕,细胞两端有溶菌通道.动物试验表明,用菌蜕口服免疫的银鲫,在第5周产生较高的凝集抗体,达到27,并能维持2周;而甲醛灭活苗组为26,维持时间仅一周;生理盐水对照组效价仅2.攻击试验表明,菌蜕疫苗组和甲醛灭活疫苗组对嗜水气单胞菌强毒株J.1的攻击均有保护作用,其相对保护率分别为16/20(78.95%)和12/20(57.9%),显示菌蜕疫苗比普通灭活疫苗能更有效地激活机体的免疫保护.  相似文献   

7.
细菌菌影(bacterial ghost,BG)是革兰阴性菌在噬菌体PhiX174的裂解基因E的作用下形成不含核酸、核糖体等胞质内容物的细菌空壳。这种细菌空壳保留了与天然细菌一样的完整外膜结构,且不具有活菌样的致病作用,可作为疫苗无需佐剂就能诱导机体产生体液免疫应答和细胞免疫应答。菌影内部及外膜上可装载DNA、抗原和药物等异源物质,易被机体免疫细胞识别捕获,使其成为一种新型的生物递送载体。另外,菌影具有制备简单,易于保存等优点。细菌菌影在疾病预防和治疗方面具有广阔的应用前景。  相似文献   

8.
大黄鱼源溶藻弧菌的鉴定及其菌蜕制备   总被引:3,自引:0,他引:3  
【背景】菌蜕是诱导Phi X174噬菌体裂解基因E(Lysis E)在革兰氏阴性菌中表达后所获得无细胞内容物的细菌空壳。菌蜕生物安全性高,能以类似活菌方式诱导机体产生良好的系统和黏膜免疫应答。【目的】对分离自患溃疡病大黄鱼肝脏中的病原菌株16-3进行种属鉴定,利用温控调节表达系统控制Phi X174噬菌体裂解基因E在该菌株中的表达来制备菌蜕,为防控鱼类溶藻弧菌感染提供有效手段。【方法】采用形态特征观察、生理生化特性测定及16S r RNA基因序列分析等方法对菌株16-3进行鉴定;构建温控裂解质粒p BV220-Lysis E,并将其电转至溶藻弧菌菌株16-3,形成重组溶藻弧菌菌株16-3(p BV220-Lysis E);将不同起始浓度的重组溶藻弧菌培养物同时进行42°C升温诱导,比较其溶菌动力曲线和裂解效率的差异;在最佳条件下制备溶藻弧菌菌株16-3菌蜕,电镜观察其形态与结构,采用倾注平板法测定冻干菌蜕中的活菌数。【结果】综合菌株16-3在形态、生理生化及16S r RNA基因系统发育等方面的特性,确定其为溶藻弧菌;构建了温控裂解质粒p BV220-Lysis E和重组溶藻弧菌菌株16-3(p BV220-Lysis E);溶藻弧菌菌株16-3菌蜕制备的最佳条件是选择起始浓度OD600为0.3的菌液进行诱导,诱导3 h后即可收获菌蜕,其裂解效率为96.9%,但经冻干处理后的菌蜕无活菌残留;电镜观察发现菌株16-3菌蜕保持原细胞的基本形态,但细胞表面有明显的溶菌孔道,且由于细胞内容流失而使细胞表面发生皱缩。【结论】制备出溶藻弧菌菌株16-3菌蜕,为其作为疫苗或疫苗递送载体奠定了基础。  相似文献   

9.
菌蜕系统(Bacterial Ghost,BG)的形成是利用噬菌体PhiX174的裂解蛋白E在革兰阴性菌细胞膜形成一个跨膜孔道结构,使细菌胞内物质由孔道排出而引起死亡。这种基因灭活的过程不引起细菌表面结构的任何理化变性,因此生成的细菌空壳具有与活菌相同功能的膜抗原结构,可诱导机体的体液免疫和细胞免疫应答。检测和比较了在铁调控启动子PyncE和温度调控启动子PR/cI控制下的E基因对迟钝爱德华氏菌菌蜕系统(EBG)的生成效率。结果显示,2种启动子均能成功生成EBG,电镜下可观察到细菌两端有直径约为80~400 nm的孔洞。传统菌蜕系统所用的热启动子在诱导后3 h开始裂解,8 h后细菌停止死亡;而新型铁诱导启动子在诱导后2 h细菌即完全停止生长。本研究为将来开发菌蜕载体疫苗防治爱德华氏菌症奠定了基础。  相似文献   

10.
目的:优化大肠杆菌菌蜕装载质粒的效率,并将装载质粒的菌蜕转染抗原提呈细胞,以提高核酸疫苗的递送水平。方法:将质粒pHH43转化大肠杆菌DH5α,制备大肠杆菌菌蜕;优化菌蜕装载质粒时菌蜕、质粒和膜囊的比例,获得更高的装载效率,通过扫描及透射电镜、流式细胞术观察其形态变化及装载效率;将装载质粒的菌蜕与抗原提呈细胞——巨噬细胞RAW264.7和树突状细胞DC2.4共孵育,观察吞噬效果。结果:优化了大肠杆菌菌蜕装载质粒的效率,当菌蜕、质粒、膜囊的比例为7∶10∶4时效率达到最佳,装载DNA效率达98%以上;抗原提呈细胞吞噬装载了质粒的菌蜕,效率达100%。结论:大肠杆菌菌蜕可高效装载核酸疫苗,且高效被抗原提呈细胞捕获,有助于提高核酸疫苗的递送和免疫效果的提高。  相似文献   

11.
Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts from a variety of bacteria are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extends the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying foreign epitopes further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts have inherent adjuvant properties, they can be used as adjuvants in combination with subunit vaccines. Subunits or other ligands can also be coupled to matrixes like dextran which are used to fill the internal lumen of ghosts. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in this production. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. The endotoxic component of the outer membrane does not limit the use of ghosts as vaccine candidates but triggers the release of several potent immunoregulatory cytokines. As carriers, there is no limitation in the size of foreign antigens that can be inserted in the membrane and the capacity of all spaces including the membranes, peri-plasma and internal lumen of the ghosts can be fully utilized. This extended recombinant ghost system represents a new strategy for adjuvant free combination vaccines.  相似文献   

12.
目的:考察重组菌蜕和蛋白质疫苗混合后对BAB/c小鼠机体免疫反应的影响。方法:首先构建展示尿素酶B抗原表位的大肠杆菌菌蜕,同时通过融合PCR构建分子内佐剂蛋白质疫苗rLTBKAT,然后分别利用该菌蜕和蛋白质疫苗免疫BAB/c小鼠。结果:当rLTBKAT和重组菌蜕联合口服免疫BAB/c小鼠时,其抗尿素酶B抗体的效价由单独免疫时的1∶(239±23)提高到1∶(681±76),二者差异极显著(P=0.009);而其抗过氧化氢酶抗体的效价则由单独免疫时的1∶(2800±275)下降至1∶(1800±400),二者差异不显著(P=0.08)。抗体分型试验表明,单独和联合免疫时,其抗尿素酶B抗体类型均以IgG1为主,而抗过氧化氢酶抗体类型则由单独免疫时的IgG1为主转变为联合免疫时的IgG2a为主。联合免疫时,小鼠抗尿素酶B和抗过氧化氢酶IgA抗体水平均高于单独免疫时。结论:重组菌蜕和蛋白质疫苗联合免疫,可提高机体对某些抗原的免疫水平或改变其反应类型。  相似文献   

13.
杆菌属的芽胞作为益生菌已经应用于人和动物的食品生产和细菌疗法.目前,芽胞作为一种新型的疫苗载体,开始用于破伤风、炭疽等疫苗的研究.与目前的第二代疫苗相比,细菌芽胞热稳定性好,遗传操作方便,是一种理想的疫苗载体.本文就其作为疫苗载体的相关研究进行综述.  相似文献   

14.
细菌细胞表面展示技术是一项新的蛋白质应用技术,其体系由运载蛋白、靶蛋白和宿主菌三者构成,一般可将其分为革兰阴性菌展示体系和革兰阳性菌展示体系两大类。目前已证实多种具有锚定活性的运载蛋白,并用于不同靶蛋白的细胞表面展示体系。该技术现已被应用于活体重组疫苗的开发、蛋白质文库构建与筛选、生物传感器、全细胞生物催化剂、全细胞生物吸附与降解等多个研发领域。  相似文献   

15.
采用鲎试剂法检测重组 (CHO细胞 )乙型肝炎疫苗中的细菌内毒素含量 ,研究了甲醛、硫柳汞、氢氧化铝等疫苗成分对鲎试剂试验的影响。结果表明 ,疫苗中各成分对检测未见影响 ,所以检测本疫苗中内毒素含量时 ,采用鲎试剂法是可行的。同时 ,用此试验方法对本室所生产的重组 (CHO细胞 )乙型肝炎疫苗进行了检测 ,疫苗中内毒素含量全部合格  相似文献   

16.
植物对细菌群体感应系统的反应   总被引:8,自引:0,他引:8  
细菌的群体感应系统参与包括动植物病原细菌致病因子产生在内的许多生物学功能的调节。植物可以感知细菌群体感应系统及其信号分子,并作出复杂反应。植物可能受细菌群体感应信号分子诱导产生系统性防御反应,能够分泌细菌群体感应信号分子的类似物,可能产生降解细菌N-酰基高丝氨酸内酯信号分子的酶来阻断或干扰细菌群体感应系统。  相似文献   

17.
Abstract Streptococcus pneumoniae is a Gram-positive human pathogen that causes a variety of serious mucosal and invasive diseases in human. Bacterial membrane proteins play crucial roles in host-pathogen interactions and bacterial pathogenesis, and thus are potential drug targets or vaccine candidates. In this study, membranes from Streptococcus pneumoniae D39 were enriched by mechanical grinding and ultracentrifugation, and then the membrane proteins were extracted with trifluroethanol and chloroform. Around 60% of the extracted proteins were identified to be membrane proteins with 2-DE coupled with MALDI-MS/MS and 2D-LC-ESI-MS/MS. These identified membrane proteins can be functionally categorized into various groups involved in nutriment transport, signal transduction, protein folding or secretion, oxidation, carbohydrate metabolism, and other physiological processes. A protein interaction network was constructed for understanding the regulation relationship of the membrane proteins. This study represents the first global characterization of membrane proteome from Gram-positive streptococcus species of bacteria, providing valuable clues for further investigation aiming at identifying drug/vaccine targets for the bacterial infection.  相似文献   

18.
BACKGROUND: E. coli and Salmonella ghost preparations, produced by applying the PhiX174 protein E-mediated lysis system, contain nonlysed bacteria at a very low percentage. To use the ghosts as vaccines, additional methods have to be identified to remove any viable cell, to end up in totally inactivated ghost fractions. Materials and Methods To increase the purity of ghost fractions, we established a green fluorescent protein (GFP)-dependent "in vivo staining" method to be combined with the E-mediated lysis system. Several gfp expression vectors were constructed, and the corresponding cellular fluorescence was analyzed. Bacterial fluorescence, exclusively preserved in nonlysed cells, was utilized to separate these cells from ghost preparations via flow cytometric sorting. RESULTS: High-level production of GFP prior to induction of the lysis system did not affect bacterial growth rates and caused no inhibitory effects on the subsequent protein E-mediated lysis of the cells. The population of reproductive or inactivated but nonlysed cells was highly fluorescent at mean intensities 215-fold higher than ghosts, which exhibited fluorescence at background level. Fluorescent cells could effectively be separated from ghost preparations via flow cytometric sorting. Cell sorting subsequent to protein E-mediated lysis reduced the number of viable cells within ghost preparations by a factor of 3 x 10(5). CONCLUSIONS: The presented procedure is compatible with the protein E-mediated lysis system, is highly effective in separation of nonlysed fluorescent cells, and may serve as a prototype for ghost-purification in applications where only a minimum number of viable cells within ghost preparations can be tolerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号